giải bpt:
1. \(\frac{\sqrt{-3x^2+x+4}+2}{x}< 2\)
2. \(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
3. \(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x=18}\)
4. 4(x+1)2 \(\ge\) (2x +10)( 1- \(\sqrt{3+2x}\))2
5. \(\sqrt{1+x}-\sqrt{1-x}\ge x\)
giải các BPT :
1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)
2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)
3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)
câu 1: lập bảng xét dấu để tìm nghiệm của bất pt sau:
a/\(4x^2-5x+1\ge0\)
b/\(3x^2-4x+1\le0\)
câu 2:
a/\(|x^2-3x+2|\le8-2x\)
b/\(x^2-5x+\sqrt{x\left(5-x\right)}+2< 0\)
c/\(\sqrt{8+2x-x^2}>6-3x\)
d/\(2\sqrt{1-\frac{2}{x}}+\sqrt{2x-\frac{8}{x}}\ge x\)
e/\(|x^2-4x+3|>2x-3\)
f/\(\sqrt{-x^2+6x-5}\le8-2x\)
g/\(x^2-8x-\sqrt{x\left(x-8\right)}< 6\)
h/\(3\sqrt{1-\frac{3}{x}}+\sqrt{3x-\frac{27}{x}}\ge x\)
Giai bpt :
\(\sqrt{x^2-4x+3}-\sqrt{2x^2-3x+1}\ge x-1\)
Giải các bất phương trình sau:
1. \(\sqrt{5x+1}-\sqrt{4x-1}< 3\sqrt{x}\)
2. \(\sqrt{x+2}-\sqrt{3-x}< \sqrt{5-2x}\)
3 \(\dfrac{\sqrt{12+x-x^2}}{x-11}\ge\dfrac{\sqrt{12+x-x^2}}{2x-9}\)
4.\(\sqrt{x^2-8x+15}+\sqrt{x^2+2x-15}\le\sqrt{4x^2-18x+18}\).
Bài 1 : giải các phương trình sau
1 , \(\left(x^2-6x\right)\sqrt{17-x^2}=x^2-6x\)
2 , \(\left(x^2+5x+4\right)\sqrt{x+3}=0\)
3, \(\sqrt{3x}+\sqrt{2x-2}=\sqrt{1-x}+2\)
4, \(\left(x^2-4x+3\right)\sqrt{x-2}=0\)
5 , \(\sqrt{x^2+3x-2}=\sqrt{1+x}\)
6 , \(\left(\sqrt{x-4}-1\right)\left(x^2-7x+6\right)=0\)
7, \(\sqrt{2x^2-8x+4}=x-2\)
8 , \(\sqrt{3x+7}-\sqrt{x+1}=2\)
Mọi người giúp em với ạ!!! Em cần gấp lắm
1. Giải các bất phương trình:
a. \(\sqrt{x+3}-\sqrt{5-x}\) ≤ \(\sqrt{x+1}\)
b. x2 + 4x - 6 ≥ \(\sqrt{2x^2+8x+12}\)
2. Giải các phương trình
a. \(\sqrt{x^2+7}+\sqrt{x-2}-5=0\)
b. \(x^2+x-6=\sqrt{x+1}-\sqrt{2x-1}\)
Giải pt, bất pt
a) \(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}=2x\right)\)
b) \(\left(x^2-3x+2\right)\left(x^2-12x+32\right)\le4x^2\)
c) \(2\sqrt{3x+7}-5\sqrt[3]{x-6}=4\)
Giải các bất phương trình, hệ phương trình
a) \(\dfrac{x^2-4x+3}{2x-3}\ge x-1\)
b) \(3x^2-\left|4x^2+x-5\right|>3\)
c)\(4x-\left|2x^2-8x-15\right|\le-1\)
d)\(x+3-\sqrt{21-4x-x^2}\ge0\)
e)\(\left\{{}\begin{matrix}x\left(x+5\right)< 4x+2\\\left(2x-1\right)\left(x+3\right)\ge4x\end{matrix}\right.\)
f)\(\dfrac{1}{x^2-5x+4}\le\dfrac{1}{x^2-7x+10}\)