Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ngọc Trâm

giải các BPT :

1. \(\sqrt{x^2-3x+2}+\sqrt{x^2-3x+16}>3\)

2.\(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}\le2x+2\)

3.\(\sqrt{2x-1}+\sqrt{3x-2}< \sqrt{4x-3}+\sqrt{5x-4}\)

Nguyễn Thị Ngọc Thơ
1 tháng 4 2020 lúc 14:04

1. Đợi chút t tìm cách ngắn gọn.

2. ĐK: \(\left\{{}\begin{matrix}2x^2+8x+6\ge0\\x^2-1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\le-3\\x\ge1\\x=-1\end{matrix}\right.\) (*)

BPT\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\3x^2+8x+5+2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\le\left(2x+2\right)^2\left(1\right)\end{matrix}\right.\)

Giải (1) \(\Leftrightarrow x^2-1-2\sqrt{\left(2x^2+8x+6\right)\left(x^2-1\right)}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\right)\ge0\)

TH1: \(\sqrt{x^2-1}=0\Leftrightarrow x=\pm1\) (tm)

TH2: \(x^2-1\ne0\)

\(\Leftrightarrow\sqrt{x^2-1}-2\sqrt{2x^2+8x+6}\ge0\)

\(\Leftrightarrow\sqrt{x^2-1}\ge2\sqrt{2x^2+8x+6}\)

\(\Leftrightarrow x^2-1\ge8x^2+32x+24\)

\(\Leftrightarrow7x^2+32x+25\le0\)

\(\Leftrightarrow-\frac{25}{7}\le x\le-1\) kết hợp đk (*) và đk để giải bpt

=>\(x=-1\)

Vậy \(x=\pm1\)

Khách vãng lai đã xóa
Nguyễn Thị Ngọc Thơ
1 tháng 4 2020 lúc 14:14

3. ĐK: \(x\ge\frac{4}{5}\)

\(BPT\Leftrightarrow\sqrt{5x-4}-\sqrt{3x-2}+\sqrt{4x-3}-\sqrt{2x-1}>0\)

\(\Leftrightarrow\frac{2x-2}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{2x-2}{\sqrt{4x-3}+\sqrt{2x-1}}>0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\sqrt{5x-4}+\sqrt{3x-2}}+\frac{1}{\sqrt{4x-3}+\sqrt{2x-1}}\right)>0\)

\(\Leftrightarrow x-1>0\) \(\Leftrightarrow x>1\)

Vậy \(x>1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Ngọc Trâm
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Chiều Xuân
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Kim Chi Đặng
Xem chi tiết
Phạm Minh Khôi
Xem chi tiết