Tìm giá trị nhỏ nhất của biểu thức: A=|2x-2| + |2x-2018|
Ta có:
|2x - 18| = |-(2x - 18)| = |18 - 2|
\(\Rightarrow\) \(P=\left|2x-2018\right|+\left|2x-18\right|=\left|2x-2018\right|+\left|18-2x\right|\)
Ta có:
\(\left|2x-2018\right|+\left|18-2x\right|\ge\left|2x-2018+18-2x\right|\)
\(\Rightarrow\left|2x-2018\right|+\left|18-2x\right|\ge\left|-2000\right|\)
\(\Rightarrow\left|2x-2018\right|+\left|18-2x\right|\ge2000\)
Vậy giá trị nhỏ nhất của P là 2000
Tìm giá trị nhỏ nhất của biểu thức sau:
B= (x+2)^2+(y-5/2)^2018-10
D= |2x-1|+|2x-5|
Tìm giá trị LỚN nhất của biểu thức
A= \(\frac{3}{\left(2x-3\right)^4+5}\)
C= \(\frac{27-2x}{12-x}\) (x thuộc Z)
Tìm giá trị nhỏ nhất của biểu thức : a, ( x-2)^2 ; b, (2x-1)^2+1 Tìm giá trị lớn nhất của biểu thức a, -x^2 ; b, -2x^2+5 ; c, 1/ 2x^2+5
a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)
nên Dấu '=' xảy ra khi x-2=0
hay x=2
Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2
Tìm giá trị nhỏ nhất của biểu thức:
A = | 2x - 9 | + 2018
các bạn giúp mình nha
Gía trị nhỏ nhất của A là 2019 khi x = 4
Hk tốt
Tìm GTNN của biểu thức :
A = | 2x - 9 | + 2018
Vì |2x - 9| lớn hơn hoặc bằng 0 với mọi x € Z
=> | 2x - 9| + 2018 lớn hơn hoặc bằng 2018 với mọi x € Z .
Dấu " = " xảy ra <=> | 2x - 9 | = 0
<=> 2x - 9 = 0
<=> 2x = 9
<=> x = 4,5
Vậy Amin = 2018 <=> x = 4,5
a) Tìm giá trị nhỏ nhất của biểu thức: A = 4x2 - 12x + 100
b) Tìm giá trị lớn nhất của biểu thức: B = -x2 - x + 1
c) Tìm giá trị nhỏ nhất của biểu thức: C = 2x2 + 2xy + y2 - 2x + 2y + 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Tìm giá trị nhỏ nhất của biểu thức: A=x^2-2
Tìm giá trị lớn nhất của biểu thức: B= 5-x^2+2x
Cho biểu thức A = 2018 - (2x - 118)
Biểu thức A đạt giá trị là là 1 số tự nhiên lớn nhất. Giá trị lớn nhất đó bằng bao nhiêu? Biểu thức A đạt giá trị nhỏ nhất. Giá trị nhỏ nhất là bao nhiêu?a. Tìm giá trị lớn nhất của biểu thức: B = 10\(-5-\left(2x-5\right)^2\)
b. Tìm giá trị nhỏ nhất của biểu thức :C = |2x -4|- |2x- 6|
a. ta có (2x-5)2 >= 0 với mọi x thuộc R
vậy 5 -(2x-5)2 <= 5
dấu = xảy ra khi (2x-5)2=0
vậy 2x-5=0
2x =5
x= 5/2=2,5
Vậy để B lớn nhất thì x=2,5
b. ta có | 2x-4| >= 0 với mọi x thuộc R
| 2x-6| >= 0 với mọi x thuộc R
vậy | 2x-4 |- |2x-6| >= 0
dấu = xảy ra khi |2x-4| và |2x-6| đều bằng 0
=> 2x-4=0 => 2x - 6=0
2x =4 2x =6
x=4/2=2 x= 6/2=3