CHO a , b \(\in Z\)
CM : A = ab (a\(^4\)-b\(^4\)) \(⋮\)30
Cho a, b \(\in\) z. Cm: ab( \(a^4\) - \(b^4\) ) chia hết cho 30
Cho a,b thuộc Z Cm: ab(a^4-b^4) chia hết cho 30
Cho a, b \(\in\)z và a ko chia hết cho 2, 3, 5. Cm: a4 - b4 chia hết cho 30
Giải giúp mình nha!!!!!!!
1. cho n thuộc z
c/m a=n^4-n^2 chia hết cho 12
2.cho n thuộc z
c/m a= n^2(n^4-1) chia hết cho 60
3.cho n thuộc z
c/m a=2n(16-n^4) chia hết cho 30
4.cho a,b thuộc z
c/m M=ab(a^4-b^4) chia hết cho 30
cho \(a,b\in Z\) thỏa mãn :
a2-2a(b+1)+(b-1)2=0
Cm : ab chia hết 4
Chứng tỏ : ab(a4 - b4) chia hết cho 30 với a,b thuộc Z
Cho \(E=\left\{x\in Z|\left|x\right|\le5\right\}\); \(A=\left\{x\in R|x^2+3x-4=0\right\}\);
\(B=\left\{x\in Z|(x-2)(x+1)(2x^2-x-3)=0\right\}\)
a) CM \(A\subset E\),\(B\subset E\)
b) Tìm \(E\backslash\left(A\cap B\right)\),\(E\backslash\left(A\cup B\right)\) rồi tìm quan hệ giữa hai tập hợp này.
\(E=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A=\left\{1;-4\right\}\)
\(B=\left\{2;-1\right\}\)
a) Với mọi x thuộc A đều thuộc E \(\Rightarrow A\subset E\)
Với mọi x thuộc B đều thuộc E \(\Rightarrow B\subset E\)
b) \(A\cap B=\varnothing\)
\(\Rightarrow E\backslash\left(A\cap B\right)=\left\{-5;-4;-3;-2;-1;0;1;2;3;4;5\right\}\)
\(A\cup B=\left\{-4;-1;1;2\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)=\left\{-5;-3;-2;0;3;4;5\right\}\)
\(\Rightarrow E\backslash\left(A\cup B\right)\subset E\backslash\left(A\cap B\right)\)
1, CM ko thể tìm được các số nguyên x;y;z
/x-y/+/y-z/+/z-x/=2017
/ / thay cho đấu giá trị thuyết đối
2, CM voi moi n thi 10n+45n+1⋮27
3, cho (a;b)=1 . tim (a;a+b); (ab;a-b); ( a+ b ; a-b)
4, CM 7a + 2b ⋮ 13 thi 10a + b ⋮ 13
Bài 4:
7a+2b chia hết cho 13
=>70a+20b chia hết cho 13
=>70a+7b+13b chia hết cho 13
=>7(10a+b)+13b chia hết cho 13
=>7(10a+b) chia hết cho 13
=>10a+b chia hết cho 13
Cho \(a,b\in N\) và a>b . C/m:
a) \(A=ab\left(a^4-b^4\right)⋮30\)
b)\(B=a^2b^2\left(a^4-b^4\right)⋮60\)
a) \(ab\left(a^4-b^4\right)=a^5b-ab^5=a^5b-ab-\left(ab^5-ab\right)\)
Xét: \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)\left(x^2-4\right)+5\left(x-1\right)\left(x+1\right).x\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5x\left(x-1\right)\left(x+1\right)\)
= A + B
Vì \(A⋮2,3,5\) ; \(B⋮2,3,5\)
Mà 2,3,5 là đôi nguyên tố bằng nhau
\(\Rightarrow A⋮2.3.5\) và \(B⋮2.3.5\)
\(\Rightarrow A+B⋮30\)
hay \(x^5-x⋮30\) \(\forall x\in N\)
Do đó \(a^5-a⋮30\) và \(b^5-b⋮30\) với \(a,b\in N\)
\(\Rightarrow b\left(a^5-a\right)-a\left(b^5-b\right)⋮30\)
Hay \(ab\left(a^4-b^4\right)⋮30\)
b) Ta có \(B=a^2b^2\left(a^4-b^4\right)\)
\(=ab.ab.\left(a^4-b^4\right)\) (1)
Mặt khác: \(ab\left(a^4-b^4\right)⋮30\) (ở câu a) (2)
+Nếu a hoặc b chẵn:
Từ (1) và (2) suy ra \(B⋮60\)
+Nếu a,b cùng lẽ:
Thì:\(\left(a^2-b^2\right)\) và \(\left(a^2+b^2\right)\)cùng chẵn
Suy ra \(\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4⋮4\) hay \(B⋮4\)
+ Từ (2) suy ra \(ab\left(a^4-b^4\right)⋮15\)
Mà (4;15)=1
Nên \(B⋮4.15\) hay \(B⋮60\)