Cho tam giác ABC. Vẽ đường tròn (O) đi qua A và tiếp xúc với BC tại B. Kẻ dây BD song song với AC. Gọi I là giao điểm của CD với đường tròn. Chứng minh góc IAB = góc IBC= góc ICA
cho tam giác abc vẽ đường tròn tâm O đi qua A và tiếp xúc với BC tại B. Kẻ dây BD // AC. Gọi I là giao điểm của CD với đường tròn . CMR: góc IAB=góc IBC=góc ICA
Hướng dẫn:
+) ^IAB = ^IBC = ^IDB ( cùng chắn cung IB của đường tròn tâm O)
+) ^IDB = ^ICA ( BD//AC ; so le trong )
=> ^IAB = ^IBC = ^ICA
Cho tam giác ABC. Vẽ đường tròn (O) đi qua A và tiếp xúc với BC tại B. Kẻ dây BD song song với AC. Gọi I là giao điểm của CD với đường tròn. Chứng minh: I B C ^ = I C A ^
Cho tam giác ABC .Vẽ đường tròn (O) đi qua A và tiếp xúc với BC tại B .Kẻ dây BD song song với AC .Gọi I là giao điểm của CD với đường tròn .Chứng minh ^IAB=^IBC=^ICA.
1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau
2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA
3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.
4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC ngoại tiếp đường tròn (O),D là điểm tiếp xúc của đường tròn (O) với cạnh BC. Kẻ đường kính DE của đường tròn (O).Qua E vẽ đường thẳng song song với BC cắt AB,AC tại H,K
a) Tính số đo góc góc COK ?
b) Chứng minh tam giác EOK đồng dạng tam giác DCO
c) Tia AE cắt BC tại M.Chứng minh rằng BD=CM
Từ điểm K nằm ngoài đường tròn ta kẻ các tiếp tuyến KA,KB và cát tuyến KCD đến(O). Gọi M là giao điểm của OK và AB. Vẽ dây cung DI qua M
a) Chứng minh rằng KIOD và CMOD nội tiếp
b) Chứng minh rằng KO là phân giác của góc IKD và AB là phân giác của góc CMD
c) Gọi H là trung điểm của CD. Vẽ dây AF đi qua H. Chứng minh rằng BF song song CD
d) Đường thẳng đi qua H và song song với BD cắt AB tại I. chứng minh rằng CI vuông góc OB
Cho đường tròn (O;R), và các tiếp tuyến AB,AC căt nhau tại A nằm ngoài đường tròn(B,C là các tiếp điểm).Gọi H là giao điểm của BC và OA
a)CM: OAvuông góc với BC và OH.OA=R^2
b)Kẻ đường kính BD của đường tròn (O) và đường thẳng CD vuông góc với BD (K thuộc BD).CM OA song song với CD và AC.CD=CK.AO
c)Gọi I là giao điểm của AD và CK. CM:tam giác BIK và tam giác CHK có diện tích bằng nhau.
a, Vì OB = OC ( =R )
AB = AC (tiếp tuyến)
=> OA là trung trực BC
=> OA vuông góc BC
Vì AB là tiếp tuyến (O)
\(\Rightarrow OB\perp AB\)
=> t/g OAB vuông tại B
Xét t/g OAB vuông tại B có BH là đường cao
=>\(OH.OA=OB^2=R^2\)(hệ thức lượng)
b,* Xét \(\Delta\)BCD có : OB = OC = OD (=R)
=> \(\Delta\)BCD vuông tại C
=> \(BC\perp CD\)
Mà \(BC\perp OA\)
=> CD // OA
cho tam giác ABC nội tiếp đường tròn (O) có ba góc <CAB, <ABC, <BCA đều là góc nhọn. VẼ đường kính AD của đường tròn (O). gọi E, k lần lượt là giao điểm của hai đường thẳng AC và BO, AC và BD. tiếp tuyến của đường tròn (O) tại B cắt đường thẳng CD tại điểm F.
a) chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b) chứng minh EF song song với AB. chứng minh DE vuông góc vs FK.