Cho tam giác ABC có: tanA+tanC=2tanB. CMR: cosA+cosC\(\le\dfrac{3\sqrt{2}}{4}\)
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
.Giúp mình với. Cmr trong tam giác ABC ta có:
a, sinA + sinB +sinC = 4cosA/2.cosB/2.cosC/2
b, tanA +tanB + tanC= tanA.tanB.tanC
a)\(VT=sinA+sinB+sinC=2sin\frac{A+B}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)
\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)(đpcm)
b)Ta có:\(A+B+C=180^O\)
\(\Rightarrow tan\left(A+B\right)=tan\left(-C\right)=-tanC\)
\(\Leftrightarrow\frac{tanA+tanB}{1-tanA.tanB}=-tanC\Leftrightarrow tanA+tanB+tanC=tanA.tanB.tanC\left(đpcm\right)\)
Cho tam giác ABC nhọn. H là giao điểm của 3 đường cao AD, BE, CF.
a/ Cmr: tam giác AEF~tam giác ABC và SAEF=SBCEF trong trường hợp A=45 độ.
b/ Cmr: \(EF=AH.sinA\)
C/ \(\dfrac{S_{HBC}}{tanA}=\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\)
a) Xét \(\Delta BAE\) và \(\Delta CAF\) có:
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{CFA}=90^0\)
nên \(\Delta BAE\sim\Delta CAF\left(g.g\right)\) \(\Rightarrow\dfrac{BA}{CA}=\dfrac{AE}{AF}\)\(\Leftrightarrow\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
Xét \(\Delta ABC\) và \(\Delta AEF\) có:
Góc A chung
\(\dfrac{AB}{AE}=\dfrac{AC}{AF}\)
nên \(\Delta ABC\sim\Delta AEF\left(c.g.c\right)\) \(\Rightarrow\dfrac{S_{AEF}}{S_{ABC}}=\left(\dfrac{AE}{AB}\right)^2=cos^2A=\dfrac{1}{2}\)
\(\Rightarrow2S_{AEF}=S_{ABC}=S_{AEF}+S_{BFEC}\) \(\Leftrightarrow S_{AEF}=S_{BFEC}\) (dpcm)
b) Có \(\widehat{AFE}=\widehat{ACB}\) (do \(\Delta ABC\sim\Delta AEF\))
\(\Leftrightarrow90^0-\widehat{AFE}=90^0-\widehat{ACB}\)
\(\Leftrightarrow\widehat{EFC}=\widehat{DAC}\) mà \(\widehat{C}\) chung \(\Rightarrow\Delta EFC\sim\Delta HAC\left(g.g\right)\)
\(\Rightarrow\dfrac{EF}{HA}=\dfrac{FC}{AC}\)\(\Leftrightarrow\dfrac{EF}{HA}=sinA\)\(\Leftrightarrow EF=HA.sinA\)
c)CM được:\(\Delta DHC\sim\Delta FBC\left(g.g\right)\)\(\Rightarrow\dfrac{HD}{BF}=\dfrac{CH}{BC}\Leftrightarrow\dfrac{HD.BC}{BF}=CH\)
\(\Delta HEC\sim\Delta AFC\left(g.g\right)\)\(\Rightarrow\dfrac{HE}{AF}=\dfrac{HC}{AC}\) \(\Leftrightarrow\dfrac{HE.AC}{AF}=HC\)
Xét \(S_{BHC}.tanB-S_{HAC}.tanA\)\(=\dfrac{1}{2}.HD.BC.\dfrac{FC}{BF}-\dfrac{1}{2}.HE.AC.\dfrac{FC}{AF}\)
\(=\dfrac{1}{2}.CH.FC-\dfrac{1}{2}.HC.FC=0\) \(\Leftrightarrow S_{BHC}.tanB-S_{HAC}.tanA=0\)
\(\Leftrightarrow\dfrac{S_{BHC}}{tanA}=\dfrac{S_{HAC}}{tanB}\) , CM tương tự \(\Rightarrow\dfrac{S_{HAC}}{tanB}=\dfrac{S_{HAB}}{tanC}\)
=>dpcm
Cho tam giác nhọn ABC có phân giác AD, đường cao BH và trung tuyến CE đồng qui tại O. CMR: \(\dfrac{sinB}{cosA}=tanC\)
CMR: Với mọi tam giác ABC ta có: \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA.tanB.tanC}{3}\)
Không mất tính tổng quát giả sử: \(A\ge B\ge C\)
=> \(tanA\ge tanB\ge tanC;cosA\le cosB\le cosC\)
Áp dụng BĐT Chebyshev ta có:
\(\left(\dfrac{tanA+tanB+tanC}{3}\right)\left(\dfrac{cosA+cosB+cosC}{3}\right)\ge\dfrac{tanA\cdot cosA+tanB\cdot cosB+tanC\cdot cosC}{3}\)
=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA+tanB+tanC}{3}\)
mặt khác ta có: \(tanA+tanB+tanC=tanA\cdot tanB\cdot tanC\)
=> \(\dfrac{sinA+sinB+sinC}{cosA+cosB+cosC}\le\dfrac{tanA\cdot tanB\cdot tanC}{3}\left(đpcm\right)\)
đẳng thức xảy ra khi tam giác ABC đều
Đề sai.
\(tan90^o=\dfrac{1}{0}\) (không thể chia cho không) nên đề bài sai với trường hợp tam giác vuông rồi.
cho tam giác ABC thoả mãn
a, \(\dfrac{1+cosB}{1-cosB}\)= \(\dfrac{2a+c}{2a-c}\) CM: tam giác cân
b, tanB.tanC = \(\dfrac{tanA}{sinB.sinC}\) CM: tam giác vuông
c, \(\left\{{}\begin{matrix}\dfrac{1+cosC}{sinC}=\dfrac{2a+b}{\sqrt{4a^2-b^2}}\\a^2\left(b+c-a\right)=b^3+c^3-a^3\end{matrix}\right.\) CM: tam giác đều
Các góc nhọn của tam giác ABC thỏa mãn: \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC+cosA}\)CM tam giác ABC đều
Giả thiết của dề bài chưa đúng, mình sửa lại thành \(cosA+cosB+cosC=\sqrt{cosA.cosB}+\sqrt{cosB.cosC}+\sqrt{cosC.cosA}\)
Đặt \(a=\sqrt{cosA},b=\sqrt{cosB},c=\sqrt{cosC}\)
Suy từ giả thiết :
\(2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a,b,c>0\end{cases}}\)
Vậy ta có \(\sqrt{cosA}=\sqrt{cosB}=\sqrt{cosC}\Rightarrow\hept{\begin{cases}cosA=cosB=cosC\\\widehat{A}+\widehat{B}+\widehat{C}=180^o\end{cases}}\)
\(\Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=60^o\)
\(\Rightarrow\Delta ABC\) là tam giác đều.
cho tam giác ABC .cmr
a) \(cosA+cosB+cosC\le\frac{3}{2}\)
b) \(cos2A+cos2B+cos2C\ge-\frac{3}{2}\)
a)
\(cosA=\sqrt{cosA^2}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AC}\cdot\frac{AE}{AB}}\le\frac{\frac{AF}{AC}+\frac{AE}{AB}}{2}\)(BDT AM-GM)
Tương tự ta có:
\(cosB\le\frac{\frac{BE}{BA}+\frac{BD}{BC}}{2};cosC\le\frac{\frac{CD}{CB}+\frac{CF}{CA}}{2}\)
\(\Rightarrow VT\le\frac{\frac{CF+AF}{AC}+\frac{AE+BE}{AB}+\frac{BD+DC}{BC}}{2}=\frac{1+1+1}{2}=\frac{3}{2}\)
Cách khác
CHo Tam giác ABC, M là 1 điểm bất kì nằm trong tam giác
Đặt x1=MA;x2=MB;x3=MC và p1;p2;p3 lần lượt là khoảng cách từ M đến BC,CA,AB tương ứng. Khi đó ta có BĐT \(x_1+x_2+x_3\ge2\left(p_1+p_2+p_3\right)\)
Vận dụng giải bài trên:
Gọi O,R là tâm và bán kính đg tròng ngoại tiếp Tam giá ABC
Gọi M,N,P lần lượt là trung điểm của cạnh AB,BC,CA
Dễ thấy \(^{\widehat{A}=\widehat{MOB}}\).Do đó:
\(cosA=cos\left(\widehat{MOB}\right)=\frac{OM}{OB}=\frac{OM}{R}\)
tương tự \(cosB=\frac{ON}{R};cosC=\frac{OP}{R}\)
Do đó \(cosA+cosB+cosC=\frac{OM+ON+OP}{T}\le\frac{1}{2}\left(\frac{OA+OB+OC}{R}\right)=\frac{3}{2}\) (BĐT erdos-mordell )
Dấu "=" khi tam giác ABC đều
thank nha thắng .. cậu lm ra câu b chưa
Cho tam giác ABC nhọn . CMR : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}>2\)
Ta có : \(cos^2A+cos^2B+cos^2C=1-2.cosA.cosB.cosC\)
Đặt cos A = a ; cos B = b ; cos C = c thì : \(a^2+b^2+c^2+2abc=1\)
Dự đoán : a = b = c = 1/2 nên ta đặt
a = \(\sqrt{\dfrac{xy}{\left(y+z\right)\left(z+x\right)}}\) ; \(b=\sqrt{\dfrac{yz}{\left(x+z\right)\left(x+y\right)}};c=\sqrt{\dfrac{xz}{\left(y+z\right)\left(x+y\right)}}\) ( x ; y ; z > 0 )
Khi đó : \(\Sigma\sqrt{\dfrac{cosA.cosB}{cosC}}=\Sigma\sqrt{\dfrac{y}{x+z}}\)
Cần c/m : \(\Sigma\sqrt{\dfrac{y}{x+z}}>2\) (*)
BĐT quen thuộc ; AD BĐT AM - GM ta được : \(\sqrt{\dfrac{x+z}{y}}\le\dfrac{1}{2}\left(\dfrac{x+y+z}{y}\right)\Rightarrow\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2y}{x+y+z}\)
Suy ra : \(\Sigma\sqrt{\dfrac{y}{x+z}}\ge\dfrac{2\left(x+y+z\right)}{x+y+z}=2\)
" = " ko xảy ra nên hiển nhiên (*) đúng
Hoàn tất c/m