Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngoc An Pham
Xem chi tiết
Eren
4 tháng 8 2018 lúc 21:10

\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}=\dfrac{\sqrt{4a\left(3b+c\right)}=\sqrt{4b\left(3c+a\right)}+\sqrt{4c\left(3a+b\right)}}{2}\le\dfrac{\left(4a+3b+c\right)+\left(4b+3c+a\right)+\left(4c+3a+b\right)}{4}\)\(=\dfrac{8\left(a+b+c\right)}{4}=2\left(a+b+c\right)\)

Dấu "=" xảy ra <=> a = b = c

DƯƠNG PHAN KHÁNH DƯƠNG
4 tháng 8 2018 lúc 11:15

Theo BĐT Cô - Si ta có :

\(\left\{{}\begin{matrix}\sqrt{a\left(3b+c\right)}\le\dfrac{a+3b+c}{2}\\\sqrt{b\left(3c+a\right)}\le\dfrac{b+3c+a}{2}\\\sqrt{c\left(3a+b\right)}\le\dfrac{c+3a+b}{2}\end{matrix}\right.\)

Cộng từng vế của BĐT ta được :

\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le\dfrac{5\left(a+b+c\right)}{2}=2,5\left(a+b+c\right)\)

Chịu @@

Mysterious Person
4 tháng 8 2018 lúc 13:01

áp dụng bất đẳng thức \(Bunhiacopxki\) ta có :

\(\sqrt{a\left(3b+c\right)}+\sqrt{b\left(3c+a\right)}+\sqrt{c\left(3a+b\right)}\le\sqrt{\left(a+b+c\right)\left(4a+4b+4c\right)}\)

\(=2\left(a+b+c\right)\left(đpcm\right)\)

dấu "=" xảy ra khi \(a=b=c\)

Ngoc An Pham
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 3 2019 lúc 23:05

Áp dụng BĐT \(\sqrt{xy}\le\frac{x+y}{2}\)

\(VT=\frac{2\left(a+b+c\right)}{\sqrt{4a\left(a+3b\right)}+\sqrt{4b\left(b+3c\right)}+\sqrt{4c\left(c+3a\right)}}\)

\(\Rightarrow VT\ge\frac{2\left(a+b+c\right)}{\frac{4a+a+3b}{2}+\frac{4b+b+3c}{2}+\frac{4c+c+3a}{2}}\)

\(\Rightarrow VT\ge\frac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\frac{1}{2}\) (đpcm)

Dấu "=" khi \(a=b=c\)

Ngưu Kim
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 10 2021 lúc 22:00

\(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+\sqrt{b}}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\left(đk:a\ne b,a\ge0,b\ge0\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+\sqrt{b}\right)}.\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}.\dfrac{2}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2.2}{\left(\sqrt{a}-\sqrt{b}\right)^2\left(a-1\right)}=\dfrac{2}{a-1}\in Z\)

\(\Rightarrow a-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Do \(a\ge0\)

\(\Rightarrow a\in\left\{0;2;3\right\}\)

 

Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:04

Ta có: \(P=\left(\dfrac{3\sqrt{a}}{a+\sqrt{ab}+b}-\dfrac{3a}{a\sqrt{a}-b\sqrt{b}}+\dfrac{1}{\sqrt{a}-\sqrt{b}}\right):\left(\dfrac{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}{2a+2\sqrt{ab}+2b}\right)\)

\(=\dfrac{3a-3\sqrt{ab}-3a+a+\sqrt{ab}+b}{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}\cdot\dfrac{2\left(a+\sqrt{ab}+b\right)}{\left(a-1\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\cdot\dfrac{2}{a-1}\)

\(=\dfrac{2}{a-1}\)

Để P là số nguyên thì \(a-1\in\left\{1;-1;2;-2\right\}\)

hay \(a\in\left\{2;0;3\right\}\)

Nguyễn Tuấn Anh
Xem chi tiết
Yeutoanhoc
13 tháng 6 2021 lúc 16:22

Áp dụng BĐt bunhiakovsky ta có:

`(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=(a+b)(3a+b+3b+a)`

`<=>(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})^2<=4(a+b)^2`

`<=>\sqrt{a(3a+b)}+\sqrt{b(3b+a)}<=2(a+b)`

`=>(a+b)/(\sqrt{a(3a+b)}+\sqrt{b(3b+a)})>=1/2`

Dấu "=" `<=>a=b`

Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Lê Đình Quân
Xem chi tiết
lethienduc
Xem chi tiết
Mai Trung Nguyên
4 tháng 3 2020 lúc 15:21

\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)

=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)

Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^


 

Khách vãng lai đã xóa
tth_new
6 tháng 4 2020 lúc 9:31

Đặt . Do đó . Cần chứng minh:

Or $3(x^2+y^2)^2 -(x^2+y^2)+4x^2 y^2 \geqq  \frac{1}{2} \sqrt{3(x^4+y^4)+10x^2 y^2}  $

Bình phương 2 vế và xét hiệu, ta cần chứng minh:

$ \left( 1/4-xy \right)  \left( 256\, \left( 1/4-xy \right) ^{3}+64\,
 \left( 1/4-xy \right) ^{2}+5-16\,xy \right)\geqq 0$

Đó là điều hiển nhiên vì: $xy \leqq 1/4 (x+y)^2 =1/4$

Done.

Khách vãng lai đã xóa
Nguyễn Trung Kiên
6 tháng 4 2020 lúc 16:30

eos bieets

Khách vãng lai đã xóa
Lê Hữu Minh
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Kiệt Nguyễn
2 tháng 8 2020 lúc 19:26

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì \(x,y,z>0\)và ta cần chứng minh \(\frac{x}{\sqrt{3zx+yz}}+\frac{y}{\sqrt{3xy+zx}}+\frac{z}{\sqrt{3yz+xy}}\ge\frac{3}{2}\)\(\Leftrightarrow\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\frac{3}{2}\)

Áp dụng BĐT Cauchy-Schwarz dạng phân thức, ta có: \(\frac{x^2}{x\sqrt{3zx+yz}}+\frac{y^2}{y\sqrt{3xy+zx}}+\frac{z^2}{z\sqrt{3yz+xy}}\ge\)\(\frac{\left(x+y+z\right)^2}{x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}}\)

Áp dụng BĐT Cauchy-Schwarz, ta có: \(x\sqrt{3zx+yz}+y\sqrt{3xy+zx}+z\sqrt{3yz+xy}\)\(=\sqrt{x}.\sqrt{3zx^2+xyz}+\sqrt{y}.\sqrt{3xy^2+xyz}+\sqrt{y}.\sqrt{3yz^2+xyz}\)\(\le\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\)

Ta cần chứng minh \(\sqrt{\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]}\le\frac{2}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow\left(x+y+z\right)^4\ge\frac{9}{4}\left(x+y+z\right)\left[3\left(xy^2+yz^2+zx^2+xyz\right)\right]\)

\(\Leftrightarrow\left(x+y+z\right)^3\ge\frac{27}{4}\left(xy^2+yz^2+zx^2+xyz\right)\)(*)

Không mất tính tổng quát, giả sử \(y=mid\left\{x,y,z\right\}\)thì khi đó \(\left(y-x\right)\left(y-z\right)\le0\Leftrightarrow y^2+zx\le xy+yz\)

\(\Leftrightarrow xy^2+zx^2\le x^2y+xyz\Leftrightarrow xy^2+yz^2+zx^2+xyz\le\)\(x^2y+yz^2+2xyz=y\left(z+x\right)^2=4y.\frac{z+x}{2}.\frac{z+x}{2}\)

\(\le\frac{4}{27}\left(y+\frac{z+x}{2}+\frac{z+x}{2}\right)^3=\frac{4\left(x+y+z\right)^3}{27}\)

Như vậy (*) đúng

Đẳng thức xảy ra khi a = b = c

Khách vãng lai đã xóa