Tìm m để bpt (m-2)x2 - 2(2m-3)x +5m - 6 > 0 vô nghiệm
Tìm các giá trị của tham số m để phương trình sau vô nghiệm (m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0
(m - 2)x2 + 2(2m - 3)x + 5m - 6 = 0 (1)
- Nếu m - 2 = 0 ⇔ m = 2, khi đó phương trình (1) trở thành:
2x + 4 = 0 ⇔ x = -2 hay phương trình (1) có một nghiệm
Do đó m = 2 không phải là giá trị cần tìm.
- Nếu m - 2 ≠ 0 ⇔ m ≠ 2 ta có:
Δ' = (2m - 3)2 - (m - 2)(5m - 6)
= 4m2 - 12m + 9 - 5m2 + 6m + 10m - 12
= -m2 + 4m - 3 = (-m + 3)(m - 1)
(1) vô nghiệm ⇔ Δ' < 0 ⇔ (-m + 3)(m - 1) < 0 ⇔ m ∈ (-∞; 1) ∪ (3; +∞)
Vậy với m ∈ (-∞; 1) ∪ (3; +∞) thì phương trình vô nghiệm.
Câu 1 : tìm m để BPT ( m - 1 )x2 + 2 ( m - 2 )x - 1 > 0 nghiệm đúng với mọi x ∈ R
Câu 2 : tìm m để BPT ( m - 1 )x2 + 2 ( m - 2 )x - 1 ≥ 0 vô nghiệm .
Giúp em với ạ . ThanksU <33
a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)
\(\Leftrightarrow\) vô nghiệm
Vậy không tồn tại giá trị m thỏa mãn
a Tìm m để phương trình vô nghiệm: x2 - (2m - 3)x + m2 = 0.
b Tìm m để phương trình vô nghiệm: (m - 1)x2 - 2mx + m -2 = 0.
c Tìm m để phương trình vô nghiệm: (2 - m)x2 - 2(m + 1)x + 4 - m = 0
\(a,x^2-\left(2m-3\right)x+m^2=0-vô-ngo\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow[-\left(2m-3\right)]^2-4m^2< 0\Leftrightarrow m>\dfrac{3}{4}\)
\(b,\left(m-1\right)x^2-2mx+m-2=0\)
\(m-1=0\Leftrightarrow m=1\Rightarrow-2x-1=0\Leftrightarrow x=-0,5\left(ktm\right)\)
\(m-1\ne0\Leftrightarrow m\ne1\Rightarrow\Delta'< 0\Leftrightarrow\left(-m\right)^2-\left(m-2\right)\left(m-1\right)< 0\Leftrightarrow m< \dfrac{2}{3}\)
\(c,\left(2-m\right)x^2-2\left(m+1\right)x+4-m=0\)
\(2-m=0\Leftrightarrow m=2\Rightarrow-6x+2=0\Leftrightarrow x=\dfrac{1}{3}\left(ktm\right)\)
\(2-m\ne0\Leftrightarrow m\ne2\Rightarrow\Delta'< 0\Leftrightarrow[-\left(m+1\right)]^2-\left(4-m\right)\left(2-m\right)< 0\Leftrightarrow m< \dfrac{7}{8}\)
tìm m để bpt
(m-2)x^2+2(m-2)x+m+4>=0
TH1: m=2
=>6>=0(nhận)
TH2: m<>2
Δ=(2m-4)^2-4(m-2)(m+4)
=4m^2-16m+16-4(m^2+2m-8)
=4m^2-16m+16-4m^2-8m+32
=-24m+48
Để BPTVN thì -24m+48<0
=>-24m<-48
=>m>2
tìm m để bpt sau vô nghiệm:
m^2 x^2-m(5 m+1)x-5m-2+0
X2 – 2m x + 4 =0 (2) ⦁ Tìm m để PT(2) có nghiệm ⦁ Tìm m để PT(2) vô nghiệm
Để pt (2) vô nghiệm khi
\(\Delta'=m^2-4< 0\Leftrightarrow m^2< 4\Leftrightarrow-2< m< 2\)
Tìm mệnh đêy để Bpt vô nghiệm:
(1).(m^2-5m)x+2m>=1-6x
(2).x+m^2=<m^2x-5m+6
(3).mx-2m+1>6x-2
Tìm m để bpt: \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge0\) vô nghiệm
Bpt \(\left(m-1\right)x^2+2\left(m+2\right)x+2m+2\ge\) vô nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=\left(m+2\right)^2-\left(m-1\right)\left(2m+2\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\-m^2+4m+6< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left[{}\begin{matrix}m< 2-\sqrt{10}\\m>\sqrt{2+\sqrt{10}}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< 2-\sqrt{10}}\)
Cho phương trình (2m -1)x2 -2(m + 4)x + 5m + 2 = 0. (3)
Tìm m để phương trình có nghiệm? Có 1 nghiệm? có nghiệm kép?
Bạn giải denta và chú ý điều kiện của a nhá