giải phương trình
a3-2a+4=0
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\) . Không giải phương trình, hãy tính giá trị biểu thức: \(C=\dfrac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
a là nghiệm nên \(\sqrt{2}a^2+a-1=0\Rightarrow\sqrt{2}a^2=1-a\)
\(\Rightarrow2a^4=\left(1-a\right)^2=a^2-2a+1\)
\(\Rightarrow2a^4-2a+3=a^2-4a+4=\left(a-2\right)^2\)
Mặt khác \(1-a=\sqrt{2}a^2>0\Rightarrow a< 1\)
\(\Rightarrow\sqrt{2\left(2a^4-2a+3\right)}+2a^2=\sqrt{2\left(a-2\right)^2}+2a^2=\sqrt{2}\left(2-a\right)+2a^2\)
\(=\sqrt{2}\left(\sqrt{2}a^2-a+2\right)=\sqrt{2}\left(1-a-a+2\right)=\sqrt{2}\left(3-2a\right)\)
\(\Rightarrow C=\dfrac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\dfrac{\sqrt{2}}{2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\), không giải phương trình tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Gọi a là nghiệm dương của phương trình: \(\sqrt{2}x^2+x-1=0\). Không giải phương trình hãy tính giá trị của
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
Thay \(\sqrt{2}a^2=1-a\ge\)0 suy ra a <=1 tính được mẫu = \(-\sqrt{2}\left(2a-3\right)\)
Gọi a là nghiệm dương của phương trình : \(\sqrt{2}x^2+x-1=0\). Không giải phương trình, hãy tính giá trị của biểu thức :
\(C=\frac{2a-3}{\sqrt{2\left(2a^4-2a+3\right)}+2a^2}\)
ta có :
\(\sqrt{2}a^2+a-1=0\Leftrightarrow\sqrt{2}a^2=1-a\) nên ta có \(a\le1\)
\(\Rightarrow2a^4=a^2-2a+1\)Vậy \(C=\frac{2a-3}{\sqrt{2\left(a^2-4a+4\right)}+2a^2}=\frac{2a-3}{2a^2+\sqrt{2}\left(2-a\right)}=\frac{2a-3}{\sqrt{2}\left(\sqrt{2}a^2-a+2\right)}\)
\(=\frac{2a-3}{\sqrt{2}\left(1-a-a+2\right)}=\frac{2a-3}{\sqrt{2}\left(3-2a\right)}=-\frac{1}{\sqrt{2}}\)
Giải phương trình: \(\dfrac{2a-3b}{x-2a}+\dfrac{3b-2a}{x-3b}=0\) ( a và b là hằng)
Sửa lại đề bài là giải PT và biện luận nhé các bạn
giải các phương trình sau:
a) \(\dfrac{2a}{2x-3a}-1=0\)
ĐKXĐ: \(x\ne\dfrac{3a}{2}\)
- Với \(a=0\) pt vô nghiệm
- Với \(a\ne0\)
\(\dfrac{2a}{2x-3a}=1\Leftrightarrow2a=2x-3a\)
\(\Leftrightarrow2x=5a\Rightarrow x=\dfrac{5a}{2}\)
Giải hệ phương trình x + 3 y = 1 a 2 + 1 x + 6 y = 2 a trong mỗi trường hợp sau: a = 0
Cách 1
Ta có:
Từ (1) rút ra được x = 1 – 3y (*)
Thay vào phương trình (2) ta được :
(a2 + 1).(1 – 3y) + 6y = 2a
⇔ a2 + 1 – 3(a2 + 1)y + 6y = 2a
⇔ a2 +1- 2a = 3a2.y – 6y + 3y
⇔ ( a- 1)2 = 3a2y – 3y
⇔ 3(a2 – 1).y = (a – 1)2 (**)
a = 0, phương trình (**) trở thành -3y = 1 ⇔
Thay vào (*) ta được x = 2.
Vậy hệ phương trình khi a = 0 có nghiệm duy nhất
Thay a = 0 vào hệ phương trình ta được hệ phương trình mới:
giải phương trình khi a=1
\({x^6-1\over x^3} - (2a+1){x^2-1\over x} +2a-3 =0\)
và tìm a để phương trình có nhiều hơn 2 nghiệm dương phân biệt
1. giải phương trình chứa căn bậc 2
a) \(\sqrt{x^2-x+1}=x\)
b) \(\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}=0\)
c) \(\sqrt{x^4-2x^2+1}=x-1\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2-x+1=x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\1-x=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\)
b.
ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-3\end{matrix}\right.\)
Do \(\left\{{}\begin{matrix}\sqrt{x^2-3x+2}\ge0\\\sqrt{x^2+x-6}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\sqrt{x^2-3x+2}+\sqrt{x^2+x-6}\ge0\)
Đẳng thức xảy ra khi:
\(\left\{{}\begin{matrix}x^2-3x+2=0\\x^2+x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=2\) (thỏa mãn ĐKXĐ)
Vậy pt có nghiệm duy nhất \(x=2\)
c.
Với \(x< 1\Rightarrow\left\{{}\begin{matrix}x-1< 0\\\sqrt{x^4-2x^2+1}\ge0\end{matrix}\right.\) phương trình vô nghiệm
Với \(x\ge1\) pt tương đương:
\(\sqrt{\left(x^2-1\right)^2}=x-1\)
\(\Leftrightarrow\left|x^2-1\right|=x-1\)
\(\Leftrightarrow x^2-1=x-1\) (do \(x\ge1\Rightarrow x^2-1\ge0\Rightarrow\left|x^2-1\right|=x-1\))
\(\Leftrightarrow x^2-x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0< 1\left(loại\right)\\x=1\end{matrix}\right.\)
Cho phương trình ẩn x : (2a-1)^2-2(a+4)x+5 a+2=0 . Tìm a để phương trình có nghiệm.