Giải pt: \(3x-1+\dfrac{x-1}{4x}=\sqrt{3x+1}\)
giải pt :
a, \(4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{16x^4+4x^2+1}=0\)
b, \(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{x^4+x^2+1}=0\)
a.
\(\Leftrightarrow4x^2-6x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(4x^2-2x+1\right)\left(4x^2+2x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{4x^2-2x+1}=a>0\\\sqrt{4x^2+2x+1}=b>0\end{matrix}\right.\) ta được:
\(2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
\(\Leftrightarrow\left(a-\dfrac{b}{\sqrt{3}}\right)\left(2a+\sqrt{3}b\right)=0\)
\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}\)
\(\Leftrightarrow3a^2=b^2\)
\(\Leftrightarrow3\left(4x^2-2x+1\right)=4x^2+2x+1\)
\(\Leftrightarrow...\)
b.
\(x^2-3x+1+\dfrac{1}{\sqrt{3}}\sqrt{\left(x^2-x+1\right)\left(x^2+x+1\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x+1}=a>0\\\sqrt{x^2+x+1}=b>0\end{matrix}\right.\)
\(\Rightarrow2a^2-b^2+\dfrac{1}{\sqrt{3}}ab=0\)
Lặp lại cách làm câu a
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giải pt :
a, \(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
b, \(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt :
a,\(2x^2-11x+21=3\sqrt[3]{4x-4}\)
b,\(\dfrac{\sqrt{x-3}}{\sqrt{2x-1}-1}=\dfrac{1}{\sqrt{x+3}-\sqrt{x-3}}\)
c,\(\left(\sqrt{x^2+x+1}+\sqrt{4x^2+x+1}\right)\left(\sqrt{5x^2+1}-\sqrt{2x^2+1}\right)=3x^2\)
giải pt
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
\(\sqrt{4x+1}-\sqrt{3x-2}=\dfrac{x+3}{5}\)
ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-\dfrac{1}{4}\\x\ge\dfrac{2}{3}\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow x\ge\dfrac{2}{3}\)
\(pt\Leftrightarrow\dfrac{\left(\sqrt{4x+1}-\sqrt{3x-2}\right)\left(\sqrt{4x+1}+\sqrt{3x-2}\right)}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{x+3}{5}\)
\(\Leftrightarrow\dfrac{4x+1-3x+2}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{x+3}{5}=0\)
\(\Leftrightarrow\left(x+3\right)\left(\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}-\dfrac{1}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\left(KTM\right)\\\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{1}{\sqrt{4x+1}+\sqrt{3x-2}}=\dfrac{1}{5}\)
\(\Leftrightarrow\sqrt{4x+1}=5-\sqrt{3x-2}\)
Tự bình phương và giải nốt nhé ^-^
Giải pt:
\(\dfrac{8x^3+4x}{x+1}=3\sqrt{3x+1}\)
1)giải pt: 1+\(\dfrac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
2)giải pt: \(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
giải pt :
a, (x+5)(2-x)=3\(\sqrt{x^2+3x}\)
b, \(\sqrt[3]{\dfrac{2x}{x+1}}+\sqrt[3]{\dfrac{1}{2}+\dfrac{1}{2x}}=2\)
c,\(\sqrt[5]{\dfrac{16x}{x-1}}+\sqrt[5]{\dfrac{x-1}{16x}}=\dfrac{5}{2}\)
d, \(\sqrt{5x^2+10x+1}=7-2x-x^2\)
e, \(\sqrt{2x^2+4x+1}=1-2x-x^2\)
giải pt \(\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt{2x+1}}=\dfrac{1}{\sqrt{x+1}}+\dfrac{1}{\sqrt{3x-1}}\)