Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ghét Hoá =))
Xem chi tiết
Dương Thị Thu Hiền
Xem chi tiết
Lâm hà thu
Xem chi tiết
Ben 10
14 tháng 9 2017 lúc 21:09

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

Nguyễn Văn Thành
14 tháng 9 2017 lúc 21:10

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 5 2017 lúc 10:06

Nguyễn An
Xem chi tiết
Trên con đường thành côn...
30 tháng 7 2021 lúc 21:16

undefined

Phía sau một cô gái
30 tháng 7 2021 lúc 21:16

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

Tấn Sang Nguyễn
Xem chi tiết
Akai Haruma
2 tháng 12 2023 lúc 17:34

Lời giải:
$x^2-3x+9=-xy+2y$

$\Leftrightarrow x^2+x(y-3)+(9-2y)=0$

Coi đây là pt bậc 2 ẩn $x$. PT có nghiệm nguyên khi:

$\Delta=(y-3)^2-4(9-2y)=m^2$ với $m$ là stn.

$\Leftrightarrow y^2+2y-27=m^2$
$\Leftrightarrow (y+1)^2-28=m^2$

$\Leftrightarrow 28=(y+1)^2-m^2=(y+1-m)(y+1+m)$

Do $y+1-m, y+1+m$ là các số nguyên và có cùng tính chẵn lẻ, $y+1-m\leq y+1+m$ với $m$ tự nhiên nên:

TH1: $y+1-m=2; y+1+m=14$

$\Rightarrow y=7$. Thay vào pt và giải tìm x thôi.

TH2: $y+1-m=-14; y+1+m=-2$

$\Rightarrow y=-9$. Đến đây thay vào pt ban đầu và giải tìm $x$.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 4 2019 lúc 14:55

Phương trình  1 ⇔ x + y 2 x - y = 0 ⇔ x = − y 2 x = y

Trường hợp 1:  x = - y  thay vào (2) ta được  x 2 - 4 x + 3 = 0 ⇔ x = 1 x = 3

Suy ra hệ phương trình có hai nghiệm là (1; −1), (3; −3).

Trường hợp 2:  2 x = y  thay vào (2) ta được  - 5 x 2 + 17 x + 3 = 0  phương trình này không có nghiệm nguyên.

Vậy các cặp nghiệm (x; y) sao cho x, y đều là các số nguyên là (1; −1) và (3; −3).

Đáp án cần chọn là: C

Tấn Sang Nguyễn
Xem chi tiết
Trần Anh Hoàng
Xem chi tiết
Hồ Lê Thiên Đức
15 tháng 1 2022 lúc 23:51

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

Nguyễn Hoàng Phúc
Xem chi tiết
thang
17 tháng 7 2016 lúc 14:48

nhan 2 ve voi x+y roi suot hien hang dang thuc