Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Ngọc Thanh Tâm
7 tháng 11 2015 lúc 14:43

<=>1+a/b+a/c+1+b/a+b/c+1+c/a+c/b>=9<=>a/b+a/c+b/a+b/c+c/a+c/b>=6

Áp dụng BĐT Cauchy cho a/b>0 và b/a>0, ta có a/b+b/a>=2. T.tự ta có a/c+c/a>=2, b/c+c/b>=2. Vậy ta có điều phải chứng minh

Trần Hải Anh
Xem chi tiết
Võ Đông Anh Tuấn
1 tháng 1 2017 lúc 10:48

a ) Ta có :

\(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

\(=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right).\)

Ta có : \(\frac{x}{y}+\frac{y}{z}\ge2\) với \(x,y\) dương . Do đó \(A\ge3+2+2+2=9.\)

Vậy \(A\ge9.\)Đẳng thức xảy ra khi và chỉ khi \(a=b=c.\)

b ) Áp dụng BĐT ở câu a : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) trong đó \(x,y,z>0\).Với \(x=b+c,y=a+c,z=a+b\) ta được :

\(2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge9\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)\ge4,5\)

\(\Rightarrow\frac{a+b+c}{b+c}+\frac{a+b+c}{a+c}+\frac{a+b+c}{a+b}\ge4,5\)

\(\Rightarrow\frac{a}{b+c}+1+\frac{b}{a+c}+1+\frac{c}{a+b}+1\ge4,5\)

\(\Rightarrow\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\ge1,5\)

Xảy ra đẳn thức khi và chỉ khi \(a=b=c.\)

Lightning Farron
1 tháng 1 2017 lúc 11:57

sửa lại câu a

Áp dụng BĐT AM-GM 3 số dương ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế 2 BĐT trên ta có Đpcm

Dấu "=" xảy ra khi a=b=c

Lightning Farron
1 tháng 1 2017 lúc 11:57

câu b đúng hay sai ko biết

songoku3
Xem chi tiết
Nguyễn Anh Quân
25 tháng 1 2018 lúc 21:14

Đề phải là : cmr : (a+b+c).(1/a + 1/b + 1/c) >= 9

Áp dụng bđt cosi cho lần lượt 3 số a,b,c > 0 và 3 số 1/a ; 1/b ; 1/c > 0 thì :

(a+b+c)(1/a + 1/b + 1/c)

>= \(3\sqrt[3]{a.b.c}\).  \(3\sqrt[3]{\frac{1}{a}.\frac{1}{b}.\frac{1}{c}}\) =  \(3\sqrt[3]{abc}\).  \(3\sqrt[3]{\frac{1}{abc}}\)=  \(9\sqrt[3]{abc.\frac{1}{abc}}\)=  9

=> đpcm

Dấu "=" xảy ra <=> a=b=c > 0

Tk mk nha

songoku3
26 tháng 1 2018 lúc 19:34

Bạn giải là ý b), ý a) vẫn đúng đề

Trần Thanh Hải
Xem chi tiết
Incursion_03
5 tháng 1 2019 lúc 22:56

Áp dụng bất đẳng thức Cô-si cho 3 số ta được

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

Nhân 2 vế của bất đẳng thức trên lại ta được đpcm

Dấu ''='' <=> a = b = c

zZz Cool Kid_new zZz
6 tháng 1 2019 lúc 9:28

ko dùng đến BĐT cauchy cx dc!

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)

\(=1+1+1+\frac{b}{a}+\frac{c}{a}+\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=3+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{c}{b}+\frac{b}{c}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\)

Ta có:\(\frac{a}{c}+\frac{c}{a}\ge2\),thật vậy:

Gỉa sử \(a\ge c\),khi đó:\(a=c+m\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}=\frac{c+m}{c}+\frac{c}{c+m}=1+\frac{m}{c}+\frac{c}{c+m}\ge1+\frac{m}{c+m}+\frac{c}{c+m}=1+\frac{m+c}{m+c}=1+1=2\)

Chứng minh tương tự,ta được:

\(\hept{\begin{cases}\frac{c}{b}+\frac{b}{c}\ge2\\\frac{a}{b}+\frac{b}{a}\ge2\end{cases}}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{a}+\frac{a}{c}+\frac{c}{a}+\frac{c}{b}+\frac{b}{c}\ge6\)

\(\Rightarrow3+\frac{a}{b}+\frac{b}{a}+\frac{c}{a}+\frac{a}{c}+\frac{c}{b}+\frac{b}{c}\ge9\left(đpcm\right)\)

tth_new
6 tháng 1 2019 lúc 9:30

Ok,chứng minh cô si cho 3 số:

Với a,b,c không âm: \(a+b+c\ge3\sqrt[3]{abc}\)

Đặt \(\sqrt[3]{a}=x;\sqrt[3]{b}=y;\sqrt[3]{c}=z\) (x,y,z \(\ge0\))

BĐT \(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\ge0\)  (1)

Mà x,y,z \(\ge0\) suy ra \(x+y+z\ge0\)

Ta sẽ c/m: \(x^2+y^2+z^2\ge xy-yz-zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy-2yz-2zx\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) (luôn đúng)

Suy ra \(\left(x^2+y^2+z^2\right)-\left(xy+yz+zx\right)\ge0\) (2)

Do (2) đúng suy ra (1) đúng.

Vậy BĐT đã được c/m

Dương Tũn
Xem chi tiết
Trần Đức Thắng
5 tháng 8 2015 lúc 23:01

<=> \(2\left(\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}+\frac{a+b+c}{a+b}\right)\ge9\)

<=> \(1+\frac{b}{a+c}+1+\frac{a}{b+c}+1+\frac{c}{a+b}\) \(\ge\frac{9}{2}=4,5\)

<=> \(\frac{b}{a+c}+\frac{a}{b+c}+\frac{c}{a+b}\ge4,5-3=1,5\)

BẬy giowg  CM BĐT 

     \(\frac{b}{a+c}+\frac{a}{b+c}+\frac{c}{a+b}\ge1,5\) là xong 

Lê Thanh Hương
5 tháng 8 2015 lúc 23:00

uk           

Linh nè
Xem chi tiết
 Mashiro Shiina
7 tháng 5 2019 lúc 12:43

\(\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ac}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}+6\)

\(bđt\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge3+2\left(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\right)\)

Mà: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{c}+\frac{1}{a}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{4a}{b+c}+\frac{4b}{a+c}+\frac{4c}{a+b}\)

\(\Leftrightarrow2\left(\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\right)\ge3\Leftrightarrow\frac{a}{b+c}+\frac{c}{a+b}+\frac{b}{a+c}\ge\frac{3}{2}\)

bđt cuối đúng theo Nesbit. Dấu "=" xảy ra khi a=b=c

Mai Thị Loan
Xem chi tiết
TNA Atula
13 tháng 10 2019 lúc 20:31

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)=9\left(dpcm\right)\)

svtkvtm
13 tháng 10 2019 lúc 20:35

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}.\text{ÁP DỤNG BĐT CÔ SI TA ĐƯỢC:}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge3+2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{\frac{bc}{bc}}+2\sqrt{\frac{c}{a}.\frac{a}{c}}=3+2+2+2=9\)

Nguyễn Duy Long
Xem chi tiết
Hoàng Phúc
24 tháng 6 2016 lúc 10:07

1) Sửa lại:Cho x,y,z dương nhé!

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=x\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=1+\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+1+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+1=\left(1+1+1\right)+\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)

\(=3+\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{z}{x}+\frac{x}{z}\right)\)

Vì x,y,z là các số dương ,ta áp dụng bất đẳng thức Cô-Si:

\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\)

\(\frac{z}{x}+\frac{x}{z}\ge2\sqrt{\frac{z}{x}.\frac{x}{z}}=2\)

Do đó \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+2+2+2=9\)

Dấu "=" xảy ra <=> \(x=y=z\)

câu 2) mk chịu

vu duc thanh
27 tháng 6 2016 lúc 8:48

câu 2 đề sai . sửa số 3 thành số 2 . neu sua thanh co 2 thi co the ap dung bdt cosi hoac trebusep

๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Cố Tử Thần
17 tháng 3 2019 lúc 21:26

nhân ra ik

๖ۣۜmạnͥh2ͣkͫ5ツ
17 tháng 3 2019 lúc 21:27

ko rảnh mak nhân 

cái này dùng cô si

tui vừa tra mạng òi

Cố Tử Thần
17 tháng 3 2019 lúc 21:29

nhân ra

\sau đó dùng bất đẳng thức cosi chứ

ông làm kiểu gì