Giaỉ pt: \(\dfrac{x+3}{x}=\dfrac{2x+2}{2x-1}\)
Giaỉ các phương trình sau:
a, \(\dfrac{6-x}{4x-3}\)=\(\dfrac{2}{4x-3}\)
b, \(\dfrac{3-x}{2x-3}\)+x-1=\(\dfrac{-4}{2x-3}\)
c, \(\dfrac{2x-4}{x-3}\)=2x+1
a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{4}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)
\(\Rightarrow6-x=2\)
\(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)
b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{2}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)
\(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)
Vậy \(x\in\varnothing\).
a) ĐK: \(x\ne\dfrac{3}{4}\)
PT \(\Rightarrow27x-18-4x^2=8x-6\)
\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=4\)
b) ĐK: \(x\ne\dfrac{3}{2}\)
PT \(\Rightarrow3-x+2x^2-5x+3=-4\)
\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)
Vậy phương trình vô nghiệm
c) ĐK: \(x\ne3\)
PT \(\Rightarrow2x^2-5x-3=2x-4\)
\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)
Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)
Giaỉ hệ phương trình sau bằng phương pháp thế
a)\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2};\dfrac{3}{x}-\dfrac{4}{y}=-1\)
b)\(\dfrac{3}{2x-y}-\dfrac{6}{x+y}=-1;\dfrac{1}{2x-y}-\dfrac{1}{x+y}=0\)
c)\(\dfrac{5x}{x+1}+\dfrac{y}{y-3}=27;\dfrac{2x}{x+1}-\dfrac{3y}{y-3}=4\)
d)\(\dfrac{7}{x+2}+\dfrac{3}{y}=2;\dfrac{4}{x+2}-\dfrac{1}{y}=\dfrac{5}{2}\)
e)\(\dfrac{2x}{x+4}+\dfrac{2y}{2y-3}=27;\dfrac{2x}{x+4}-\dfrac{6y}{2y-3}=4\)
Bạn nào biết thì giải giúp mình với ạ,mình xin cảm ơn ạ!!!
Giaỉ các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số
d)\(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\) ≥\(1-\dfrac{x}{4}\)
e) \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
GIÚP MIK NHA MN
d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)
\(\Leftrightarrow8x+4-6+6x\ge12-3x\)
\(\Leftrightarrow14x+3x\ge12+2=14\)
\(\Leftrightarrow x\ge\dfrac{14}{17}\)
e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
\(\Leftrightarrow6x+12+4x-8< 6x-9\)
\(\Leftrightarrow4x< -9+8-12=-13\)
hay \(x< -\dfrac{13}{4}\)
Giaỉ PT
a/\(\dfrac{5\left(x-3\right)}{2}-\dfrac{4}{3}=\dfrac{3\left(x-1\right)}{4}+6\)
b/\(\dfrac{4}{2x-3}=\dfrac{1}{x+5}\)
a: \(\Leftrightarrow30\left(x-3\right)-16=9\left(x-1\right)+72\)
\(\Leftrightarrow30x-90-16=9x-9+72\)
=>30x-106=9x+63
=>21x=169
hay x=169/21
b: =>4x+20=2x-3
=>2x=-23
hay x=-23/2
GIẢI CÁC PT SAU:
\(\dfrac{2x+1}{3x+2}=5\)
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
\(\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}=\dfrac{24}{x^2-9}+2\)
Giải các pt sau:
1)\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+1}=\dfrac{3}{2-x}\)
2)\(\dfrac{3x+1}{1-3x}+\dfrac{3+x}{3-x}=2\)
3)\(\dfrac{8x-2}{3}=1+\dfrac{5-2x}{4}\)
4)
\(\dfrac{x}{x+1}-\dfrac{2x+3}{x}=\dfrac{-3}{x+1}-\dfrac{3}{x}\)
5)\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)
6)\(\dfrac{2x+5}{2x}-\dfrac{x}{x+5}=0\)
giúp mình với cám ơn
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
giải pt sau
a)\(\dfrac{60}{x}=\dfrac{4}{3}+\dfrac{60-x}{x+4}\)
b)\(\dfrac{100}{x}-\dfrac{100}{x+20}=\dfrac{5}{6}\)
c)\(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
Helppppp
b: \(\Leftrightarrow\dfrac{20}{x}-\dfrac{20}{x+20}=\dfrac{1}{6}\)
=>\(\dfrac{20x+400-20x}{x\left(x+20\right)}=\dfrac{1}{6}\)
=>x*(x+20)=400*6=2400
=>x^2+20x-2400=0
=>(x+60)(x-40)=0
=>x=-60 hoặc x=40
c: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1(nhận)
giải pt:
\(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}=\dfrac{-2x}{\left(3-x\right)\left(x+1\right)}\)
\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)
\(\Leftrightarrow x^2+x+x^2-3x=4x\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
=>x=0(nhận) hoặc x=3(loại)
đk : x khác -1 ; 3
\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)
\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)
\(\dfrac{x}{2x+2}\) - \(\dfrac{2x}{x^2-2x-3}\) = \(\dfrac{x}{6-2x}\)
\(\dfrac{2x-3}{x+5}\) \(\ge\) 3
Giải PT và BPT
a: =>\(\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{4x}{2\left(x-3\right)\left(x+1\right)}=\dfrac{-x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\)
=>x^2-3x-4x=-x^2-x
=>x^2-7x+x^2+x=0
=>2x^2-6x=0
=>x=0(nhận) hoặc x=3(loại)
b: =>\(\dfrac{2x-3-3x-15}{x+5}>=0\)
=>\(\dfrac{-x-18}{x+5}>=0\)
=>x+18/x+5<=0
=>-18<=x<-5
\(\dfrac{x}{2x+1}-\dfrac{2x}{x^2-2x-3}=\dfrac{x}{6-2x}\) (ĐKXĐ: \(x\ne3;x\ne-1\)
\(\Leftrightarrow\dfrac{x}{2x+1}-\dfrac{2x}{\left(x-3\right)\left(x+1\right)}=-\dfrac{x}{2\left(x-3\right)}\)
\(\Leftrightarrow\dfrac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}-\dfrac{2.2x}{2\left(x-3\right)\left(x+1\right)}=-\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}\)
\(\Rightarrow x^2-3x-4x=-x^2-x\)
\(\Leftrightarrow x^2-7x=-x^2-x\)
\(\Leftrightarrow x^2+x^2-7x+x=0\)
\(\Leftrightarrow2x^2-6x=0\)
\(\Leftrightarrow2x\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\left(TM\right)\\x=3\left(KTM\right)\end{matrix}\right.\)
*TM: Thỏa mãn, KTM: Ko thỏa mãn
Vậy phương trình có tập nghiệm là \(S=\left\{0\right\}\)
\(\dfrac{2x-3}{x+5}\ge3\) (ĐKXĐ: \(x\ne-5\)
\(\Leftrightarrow\dfrac{2x-3}{x+5}-3\ge0\)
\(\Leftrightarrow\dfrac{2x-3}{x+5}-\dfrac{3x+15}{x+5}\ge0\)
\(\Leftrightarrow\dfrac{2x-3-3x-15}{x+5}\ge0\)
\(\Leftrightarrow\dfrac{-x-18}{x+5}\ge0\)
\(\Leftrightarrow-18\le x\le-5\)