Cho 3.x + 2.y =2 tìm giá trị của 27^x.243^y
Câu 1: Cho hàm số y = 2x\(^2\)
a) Hãy lập bảng tính các giá trị f(-5), f(-3), f(0), f(3), f(5)
b) Tìm x biết f(x) = 8, f(x) = 6 - 4\(\sqrt{2}\)
Câu 2: Cho hàm số y = f(x) = \(\dfrac{1}{3}x^2\)
Tìm các giá trị của x, biết rằng \(y=\dfrac{1}{27}\). Cũng câu hỏi tương tự với y = 5
Câu 1:
a)
\(y=f\left(x\right)=2x^2\) | -5 | -3 | 0 | 3 | 5 |
f(x) | 50 | 18 | 0 | 18 | 50 |
b) Ta có: f(x)=8
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)
Ta có: \(f\left(x\right)=6-4\sqrt{2}\)
\(\Leftrightarrow2x^2=6-4\sqrt{2}\)
\(\Leftrightarrow x^2=3-2\sqrt{2}\)
\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)
hay \(x=\sqrt{2}-1\)
Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)
giá trị của y đẻ: 5,5 x y + 3,5 x y = 243
A, 225 B, 27 C, 2,5 D, 2700
Tìm x,y biết:
1) 3^X-1 = 1/243
2) 81^-2X x 27^X=9^5
3) ( x-y+3)^2 + (y-1)^2=0
Tìm x,y,z,t thuộc z sao cho:
27/4=-x/20=243/y^2=(z+3)^3/-4=||t|-2|/8
Cho hai biểu thức:
C = 32 x 92 x 243 + 18 x 243 x 324 + 723 x 729
D = 2181 x 729 + 243 x 81 x 27
Tính giá trị của C : D
Cho hai biểu thức:
C = 32 x 92 x 243 + 18 x 243 x 324 + 723 x 729
D = 2181 x 729 + 243 x 81 x 27
Tính giá trị của C : D
Cho 2 số dương x,y thỏa mãn \(x^3+y^3\)- xy =\(-\frac{1}{27}\)
Tính giá trị của x/y^2
Ta có :
\(x^3\) + \(y^3\) - xy = \(-\dfrac{1}{27}\)
⇔ \(x^3\) + \(y^3\) - xy + \(\dfrac{1}{27}\) = 0
⇔ \(x^3\) + \(y^3\) + \(\dfrac{1^3}{3^3}\) - 3xy.\(\dfrac{1}{3}\) = 0
⇔ (x + y + \(\dfrac{1}{3}\))(\(x^2\) + \(y^2\) + \(\dfrac{1}{9}\) - xy - \(\dfrac{1}{3}x-\dfrac{1}{3}y\)) = 0
TH1 :
x + y + \(\dfrac{1}{3}\) = 0
⇔ x + y = - \(\dfrac{1}{3}\) (loại vì x>0 ; y>0)
TH2 :
\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)\(\dfrac{1}{3}x-\dfrac{1}{3}y\)
⇔ (\(x-\dfrac{1}{3}\))\(^2\) + (\(y-\dfrac{1}{3}\))\(^2\) + (x - y)\(^2\) = 0
⇒ \(x-\dfrac{1}{3}\) = 0
\(y-\dfrac{1}{3}\) = 0
\(x-y\) = 0
⇔ x = y = \(\dfrac{1}{3}\)
Thay x = y = \(\dfrac{1}{3}\) vào \(\dfrac{x}{y^2}\) ta được :
\(\dfrac{1}{3}\) : \(\dfrac{1}{9}\)
= \(\dfrac{1}{3}\) . 9
= 3
\(\dfrac{1}{3}\)\(x^2+y^2+\dfrac{1}{9}-xy-\dfrac{1}{3}x-\dfrac{1}{3}y=0\)
Đặt \(f_{\left(x\right)}=ax^2+bx+c\left(a\ne0\right)\)
\(f_{\left(x\right)}=x\leftrightarrow ax^2+bx+c=x\leftrightarrow ax^2+\left(b-1\right)x+c=0\)
\(\Delta=\left(b-1\right)^2-4ac< 0\)
\(f_{\left(f_{\left(x\right)}\right)}=x\leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=x\)
\(\leftrightarrow\left(a^2x^2+a\left(b+1\right)x+ac+b+1\right)\left(ax^2+\left(b-1\right)x+c\right)=0\)
Do\(\left(ax^2+\left(b-1\right)x+c\right)\ne0\)
\(\leftrightarrow a^2x^2+a\left(b+1\right)x+ac+b+1=0\)
\(\Lambda=\left[a\left(b+1\right)\right]^2-4a^2\left(ac+b+1\right)=a^2\left[\left(b+1\right)^2-4\left(ac+b+1\right)\right]=a^2\left[\left(b-1\right)^2-4ac-4\right]< 0\)
-> đpcm
Bài 3: Cho biết đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k và khi x = 5 thì y= - 15. a) Tìm hệ số tỉ lệ k b) Viết công thức tính y theo x và tính x theo y. c) Tính giá trị của y khi x=3; x 4 =− ; x = 15; 2 x 5 = ; 5 x 9 = − d) Tính giá trị của x khi y =9; y 27 = − ; y 45 = − ; 6 y 5 = ; 3 y 4 = − .
BT16: Cho đơn thức \(F=\left(-\dfrac{3}{5}xy^2\right)^2.\left(\dfrac{20}{27}x^3y\right)\)
a, Thu gọn đơn thức và tìm bậc của đơn thức F
b, Tính giá trị của biểu thức F biết \(y=-\dfrac{x}{3}\)và x+y=2
a: F=9/25x^2y^4*20/27x^3y=4/15x^5y^5
Bậc: 10
b: y=-x/3 và x+y=2
=>x+y=2 và -1/3x-y=0
=>x=3 và y=-1
Khi x=3 và y=-1 thì F=4/15*(-3)^5=-324/5