cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2003^2}\)
CTR \(\frac{1}{3}< 1\)
cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2003^2}\)
CTR \(\frac{1}{3}< A< 1\)
Ta có \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2003^2}< \frac{1}{2002\cdot2003}\)
Suy ra \(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2002\cdot2003}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\)
\(A< 1-\frac{1}{2003}< 1\)
\(\Rightarrow A< 1\)
Ta có \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2003^2}< \frac{1}{2002.2003}\)
Suy ra \(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2002.2003}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2002}-\frac{1}{2003}\)
\(A< 1-\frac{1}{2003}< 1\)
\(\Rightarrow A< 1\)
CTR :
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}< 1\)
Bạn xem lời giải của mình nhé:
Giải:
\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{6.7}+\frac{1}{7.8}\\\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8} \\ =\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(=1-\frac{1}{8}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< 1\)
Chúc bạn học tốt!
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{7.8}\)
= \(1-\frac{1}{8}< 1\)
Vậy B < 1
Ta có : B=1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2
B<1/1*2+1/2*3+1/3*4+1/4*5+1/5*6+1/6*7+1/7*8
B<1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8
B<1-1/8<1
Nên B<1
Bài 1 :
1 . Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2 . Biết : 13 + 23 + ... + 103 = 3025
Tính : S = 23 + 43 + 63 + .... + 203
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
\(CTR\):\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}< 1\)
\(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...
\(\frac{1}{10^2}< \frac{1}{9.10}=\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}< 1\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}\)\(< 1\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{9.10}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{9}{10}< 1\)
Vậy \(D=\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{10^2}< 1\)
\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)
Ta có : \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}=\frac{9}{10}\)
Mà \(\frac{9}{10}< 1\)
Nên \(\Rightarrow D< 1\left(đpcm\right)\)
Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2003^2}\)
Chứng minh rằng \(\frac{1}{3}< A< 1\)
BÀI 1:CM PHÂN SỐ TỐI GIẢN:
a)\(\frac{n}{n+1}\) b) \(\frac{2n+3}{3n+1}\)c)\(\frac{12n+1}{30n+2}\)
Bài 2:CTR
\(\frac{9}{20}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Bài 3:Cho \(A=\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}+\frac{3}{15}\)CMR \(A\notinℕ\)
Phân số \(\frac{n}{n+1}\) là phân số tối giản rồi bạn nhé
CTR: \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
Bài 2
a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
b) \(B=\left(-1\frac{1}{2^2}\right)\left(-1\frac{1}{3^2}\right)\left(-1\frac{1}{4^2}\right)...\left(-1\frac{1}{2003^2}\right)\left(-1\frac{1}{2004^2}\right)\)
c) \(C=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{n^2}\right)\left(n\in N,n\ge2\right)\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
Tính \(P=\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2003^2}+\frac{1}{2014^2}}\)
Xửa đề luôn
\(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}\)
\(=\frac{n^2+n+1}{n\left(n+1\right)}=1+\frac{1}{n}-\frac{1}{n+1}\)
Thê vô được
\(P=2002+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\right)=2002+\frac{1}{2}-\frac{1}{2004}\)