Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2003^2}\)
CTR \(\frac{1}{3}< A< 1\)
Bài 1 :
1 . Tính :
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
2 . Biết : 13 + 23 + ... + 103 = 3025
Tính : S = 23 + 43 + 63 + .... + 203
\(CTR\):\(D=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{10^2}< 1\)
Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2003^2}\)
Chứng minh rằng \(\frac{1}{3}< A< 1\)
BÀI 1:CM PHÂN SỐ TỐI GIẢN:
a)\(\frac{n}{n+1}\) b) \(\frac{2n+3}{3n+1}\)c)\(\frac{12n+1}{30n+2}\)
Bài 2:CTR
\(\frac{9}{20}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)
Bài 3:Cho \(A=\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}+\frac{3}{15}\)CMR \(A\notinℕ\)
CTR: \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
CTR: \(\frac{1}{5}<\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-...+\frac{1}{98}-\frac{1}{99}<\frac{2}{5}\)
Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)
CTR: \(\frac{1}{15}< A< \frac{1}{10}\)
\(CTR:1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}\)