VẼ HỘ MÌNH BÀI NÀY VỚI !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho đường tròn (O ; R) và một dây cung AB. Gọi I là trung điểm của AB. Tia OI cắt cung AB tại M.
VẼ HỘ MÌNH HÌNH ĐỀ NÀY Ạ
Cho đường tròn (O) bán kính R = 2 cm. Điểm A nằm ngoài đường tròn. Từ A vẽ các tiếp tuyến AB,AC với đường tròn (B,C là các tiếp điểm). AO cắt BC tại D. a) Cmr 4 điểm A,B,O,C cùng thuộc 1 đường tròn và OA là trung trực của BC b) Vẽ đk BE của đường tròn (O), AE cắt đt (O) tại điểm thứ hai F. Gọi G là trung điểm của EF. Đt OG cắt đt BC tại H. Tính tích OA.OD và cm OA.OD=OG.OH c) CM EH là tiếp tuyến của đt (O)
vẽ hình hộ mình đề này Cho hình vuông ABCD có độ dài cạnh bằng 4cm. Vẽ đường tròn tâm O đường kính AD, kẻ BM là tiếp tuyến của đường tròn O ( M là tiếp điểm, M khác A), BM cắt CD tại K a) Cm 4 điểm A,B,M,O cùng thuộc 1 đg tròn ( cm: 2 tam nội tiếp) b) Chứng minh OB vuông góc OK và BM.MK= AB^2/4 c) Đường thẳng AM cắt CD tại E. Cm K là trung điểm của ED và tính chu vi tứ giác ABKD
GIúp mình vẽ hình bài này với: Cho nửa đường tròn (O;R) đường kính AB . Vẽ dây CD=R (C thuộc cung AD). Nối AC và BD cắt nhau tại M.
a) +)Xét đtron (O) có : CA,CM là hai tiếp tuyến cắt nhau tại C, tiếp điểm A,M
=> CA=CM ; OC là p/giác của góc AOM(T/chất hai tiếp tuyến cắt nhau)
Có: MD, BD là hai tiếp tuyến cắt nhau tại D , tiếp điểm M,B
=> MD=DB ; OD là p/giác của góc BOM
Ta có : DC= CM+MD
Mà CA=CM; MD=DB
Suy ra: CD= AC+BD
+)Vì AC là tiếp tuyến của nửa đtron (O) tại A nên CA vg góc với AB tại A
=> góc CAB= 90°
=> ∆ABC vuông tại A
b) Ta có : góc AOC= gócMOC (OC là phân giác của góc AOM
Góc MOD= BOD(OD là p/giác của BOM)
Lại có : AOC + MOC+ MOD+ BOD= 180°
SUY RA : MOC+ MOD=90°
=> COD=90°
=> ∆COD vuông tại O
Vì CD là tiếp tuyến của nửa đtron (O) tại M nên: OM vg góc với CD
Xét ∆OCD vg tại O; đường cao OM:
OM²= CM.MD (Hệ thức lượng…)
Mà OM=R (bán kính nửa đtron (O))
CA= CM; MD=MB
SUY RA : AC.BD=R²
(Vì ko tải đc ảnh nên chắc bạn phải tự vẽ hình…..câu c mình cảm tưởng đề bài ko đc đúng vì mình thấy nó khác với hình của mình(∆ABC ko đều đc)
giúp mình 2 bài này với. Mình cảm ơn nhiều ạ
bài 1: Cho đường tròn (O ; R) đường kính AB. Từ một điểm H nằm giữa O và A ta vẽ dây CD vuông góc với AB.Xác định vị trí của H để chu vi tam giác HOC lớn nhất. Khi đó tính diện tích của tam giác BCD.
Bài 2. Cho đường tròn (O ; 1). Lấy một điểm A cố định trên đường tròn. Vẽ tam giác MAB vuông
tại M, AB là một dây cung của đường tròn (O). Tìm giá trị lớn nhất của độ dài OM.
Các b giải hộ mình bài này với!! Cảm ơn nhiều
Cho đường tròn (O). Điểm A cố định ở ngoài đường tròn (O). Qua A kẻ một cát tuyến d cắt (O) tại B và C ( B nằm giữa A và C). Vẽ tiếp tuyến AM, AN với (O) tại M, N. Gọi I là trung điểm của BC
a) AM^2 = AB
b) M, I, O, N cùng thuộc một đường tròn
c) Đường thẳng qua B và song song với MA cắt MN tại E. CMR: IE song song với MC
Giúp mình bài này với
Cho nữa đường tròn (o) đường kính AB. Vẽ nữa đường tròn (o') đường kính OA trong cùng mặt phẳng bờ AB với nữa đường tròn (o). Vẽ cát tuyến AC của đường tròn (o) cắt đường tròn (o') tai điểm thứ hai D.
a) C/M DA =DC và hai đường tròn (o) và (o') tiếp xúc nhau.
b) vẽ tiếp tuyến Dx với đường tròn (o') và tiếp tuyến Cy với đường tròn (o). C/M Dx // Cy.
C) từ C hạ CH vuông góc với AB, cho OH= 1/3 OB .C/M BC là tiếp tuyến của đường tròn (o')
Giúp mình bài này với
Cho nửa đường tròn O đường kính AB=25cm. Trên AB lấy điểm H sao cho AH=9cm. ĐƯờng thằng vuông góc với AB tại H cắt (O) tại C. Vẽ CD song song AB. Tính CD
Giải giúp mình bài này trong tối nay : vẽ cả hình và giải theo cách của lớp 9 kì I nhé.Tớ cảm ơn,hứa sẽ tick!
Cho nửa đường tròn tâm O,đường kính MN.Kẻ tiếp tuyến Mx,Ny.Lấy A bất kì thuộc nửa đường tròn,qua A kẻ tiếp tuyến với đường tròn tâm O cắt Mx và Ny tại B và C.
a) C/m 4 điểm A,B,N,O cùng thuộc 1 đường tròn
b) C/m OA^2 = MB .MC
c) MA cắt OB tại H,NA cắt OC tại K.C/m AHOK là hình chữ nhật
d) Kẻ AE vuông góc MN cắt BN tại F.C/m F là trung điểm AE.
a: Sửa đề: A,B,M,O
Xét tứ giác BMOA có
\(\widehat{BMO}+\widehat{BAO}=90^0+90^0=180^0\)
=>BMOA là tứ giác nội tiếp
=>B,M,O,A cùng thuộc một đường tròn
b: Xét (O) có
BA,BM là tiếp tuyến
Do đó: BA=BM và OB là phân giác của \(\widehat{AOM}\)
=>\(\widehat{AOM}=2\cdot\widehat{AOB}\)
Xét (O) có
CA,CN là tiếp tuyến
Do đó: CA=CN và OC là phân giác của \(\widehat{AON}\)
=>\(\widehat{AON}=2\cdot\widehat{AOC}\)
\(\widehat{AON}+\widehat{AOM}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{AOC}+2\cdot\widehat{AOB}=180^0\)
=>\(2\cdot\widehat{BOC}=180^0\)
=>\(\widehat{BOC}=90^0\)
Xét ΔOBC vuông tại O có OA là đường cao
nên \(OA^2=AB\cdot AC\)
mà AB=BM và AC=CN
nên \(OA^2=BM\cdot CN\)
c: BA=BM
=>B nằm trên đường trung trực của AM(1)
OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra BO là đường trung trực của AM
=>BO\(\perp\)AM tại trung điểm của AM
=>BO\(\perp\)AM tại H và H là trung điểm của AM
CA=CN
=>C nằm trên đường trung trực của AN(3)
OA=ON
=>O nằm trên đường trung trực của AN(4)
Từ (3) và (4) suy ra CO là đường trung trực của AN
=>CO\(\perp\)AN tại trung điểm của AN
=>CO\(\perp\)AN tại K và K là trung điểm của AN
Xét tứ giác AHOK có \(\widehat{AHO}=\widehat{AKO}=\widehat{HOK}=90^0\)
nên AHOK là hình chữ nhật
Giúp mình bài này với ạ. Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn đó, vẽ các tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm).Trên cung nhỏ BC lấy điểm P bất kì (P khác B, P khác C).Kẻ PM vuông góc AB, PN vuông góc AC, PK vuông góc BC (M thuộc AB, N thuộc AC, K thuộc BC) a, Chứng minh tứ giác BKPM nội tiếp đường tròn. b, Chứng minh góc MKP= góc PCB. c, Gọi E, F lần lượt là giao điểm của BP và MK, CP và KN. Chứng minh EF//BC. d, Xác định vị trí điểm P trên cung nhỏ BC để (PM^2 + PN^2 + 2PK^2) đạt giá trị nhỏ nhất
a: góc BKP+góc BMP=180 độ
=>BKPM nội tiếp
b: góc MKP=góc MBP=1/2*sđ cung PB
góc PCB=1/2*sđ cung PB
=>góc MKP=góc PCB