Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhi Nguyễn

Những câu hỏi liên quan
Hoàng Việt
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:12

\(a,\Rightarrow4x^2-1-4x^2+2x=5\\ \Rightarrow2x=6\Rightarrow x=3\\ b,\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\\ \Rightarrow\left(x+1\right)\left(x^2-4\right)=0\\ \Rightarrow\left(x+1\right)\left(x+2\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\)

Trần Linh Nga
Xem chi tiết
lê thị hương giang
1 tháng 6 2018 lúc 18:23

Những hằng đẳng thức đáng nhớ (Tiếp 1)Những hằng đẳng thức đáng nhớ (Tiếp 1)

lê thị hương giang
1 tháng 6 2018 lúc 18:24

bn kiểm tra giúp mk đề 2 câu cuối , mk làm ko ra

 Mashiro Shiina
1 tháng 6 2018 lúc 19:10

Khó quá,hay quá !!!

Nguyễn Minh Chiến
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Hồng Phúc
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hồng Phúc
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

HUỲNH ANH
Xem chi tiết
Etermintrude💫
5 tháng 5 2022 lúc 15:45

undefined

CHÚC EM HỌC TỐT NHÉ oaoa

Lương Phan
Xem chi tiết
Van Anh Hoang
Xem chi tiết
Hoàng Yến
13 tháng 3 2020 lúc 19:59

\(a.x\left(x^2-1\right)=0\\ \Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

\(b.\left(x-\frac{1}{2}\right)\left(2x+5\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-\frac{1}{2}=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{5}{2}\end{matrix}\right. \)

Câu \(b\) thấy hơi kì nên chắc đề như này.

\(c.x-2\left(\frac{2}{3}x-6\right)=0\\\Leftrightarrow x-\frac{4}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x+12=0\\\Leftrightarrow -\frac{1}{3}x=-12\\\Leftrightarrow x=36\)

\(d.x^2-2x=0\\\Leftrightarrow x\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(e.\left(x^2-2x+1\right)-4=0\\ \Leftrightarrow\left(x-1\right)^2-4=0\\\Leftrightarrow \left(x-1-2\right)\left(x-1+2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

\(f.x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

\(g.4x^2+4x+1=0\\ \Leftrightarrow4\left(x^2+x+\frac{1}{4}\right)=0\\\Leftrightarrow x^2+x+\frac{1}{4}=0\\\Leftrightarrow \left(x+\frac{1}{2}\right)^2=0\\\Leftrightarrow x+\frac{1}{2}=0\\ \Leftrightarrow x=-\frac{1}{2}\)

\(h.x^2-5x+6=0\\ \Leftrightarrow x^2-2x-3x+6=0\\\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x-2\right)=0\\\Leftrightarrow \left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)

\(i.2x^2+3x=0\\ \Leftrightarrow x\left(2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-\frac{3}{2}\end{matrix}\right.\)

Khách vãng lai đã xóa
Nguyễn Thành Trương
13 tháng 3 2020 lúc 20:00

\(\begin{array}{l} a)x\left( {{x^2} - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ {x^2} - 1 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 1\\ x = - 1 \end{array} \right.\\ b)\left( {x - \dfrac{1}{2}} \right)\left( {2x + 5} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - \dfrac{1}{2} = 0\\ 2x + 5 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = \dfrac{1}{2}\\ x = - \dfrac{5}{2} \end{array} \right.\\ c)\left( {x - 2} \right)\left( {\dfrac{2}{3}x - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x - 2 = 0\\ \dfrac{2}{3}x - 6 = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 2\\ x = 9 \end{array} \right. \end{array}\)

Khách vãng lai đã xóa
Nguyễn Lê Phước Thịnh
13 tháng 3 2020 lúc 20:02

a) \(x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy: x∈{-1;0;1}

d) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy: x∈{0;2}

e) \(\left(x^2-2x+1\right)-4=0\)

\(\Leftrightarrow\left(x-1\right)^2-2^2=0\)

\(\Leftrightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy: x∈{3;-1}

f) \(x\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{1}{2}\right\}\)

g) \(4x^2+4x+1=0\)

\(\Leftrightarrow\left(2x+1\right)^2=0\)

\(\Leftrightarrow2x+1=0\)

\(\Leftrightarrow2x=-1\)

hay \(x=\frac{-1}{2}\)

Vậy: \(x=\frac{-1}{2}\)

h) \(x^2-5x+6=0\)

\(\Leftrightarrow x^2-2x-3x+6=0\)

\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy: x∈{2;3}

i) \(2x^2+3x=0\)

\(\Leftrightarrow x\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{-3}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;\frac{-3}{2}\right\}\)

Khách vãng lai đã xóa
Trần Linh Nga
Xem chi tiết
Nguyễn Trúc Mai
1 tháng 6 2018 lúc 19:12

Tìm x:

1. \(25x^2-20x+4=0\)

\(\left(5x-2\right)^2=0\)

\(5x-2=0\)

\(5x=2\)

\(x=\dfrac{2}{5}\)

⇒ S = \(\left\{\dfrac{2}{5}\right\}\)

2. \(\left(2x-3\right)^2-\left(2x+1\right).\left(2x-1\right)=0\)

\(4x^2-12x+9-\left(4x^2-1\right)=0\)

\(4x^2-12x+9-4x^2+1=0\)

\(-12x+10=0\)

\(-12x=-10\)

\(x=\dfrac{5}{6}\)

⇒ S \(=\left\{\dfrac{5}{6}\right\}\)

3. \(\left(\dfrac{1}{2}x-1\right)\left(\dfrac{1}{2}x+1\right)-\left(\dfrac{1}{2}x-1\right)^2=0\)

\(\dfrac{1}{4}x^2-1-\left(\dfrac{1}{4}x^2-x+1\right)=0\)

\(\dfrac{1}{4}x^2-1-\dfrac{1}{4}x^2+x-1=0\)

\(-2+x=0\)

\(x=2\)

⇒ S \(=\left\{2\right\}\)

4. \(\left(2x-3\right)^2+\left(2x+5\right)^2=8\left(x+1\right)^2\)

\(4x^2-12x+9+4x^2+20x+25=8\left(x^2+2x+1\right)\)

\(8x^2+8x+34=8x^2+16x+8\)

\(8x+34=16x+8\)

\(8x-16x=8-34\)

\(-8x=-26\)

\(x=\dfrac{13}{4}\)

⇒ S \(=\left\{\dfrac{13}{4}\right\}\)

5.\(4x^2+12x-7=0\)

\(4x^2+14x-2x-7=0\)

\(2x\left(2x+7\right)-\left(2x+7\right)=0\)

\(\left(2x+7\right)\left(2x-1\right)=0\)

\(\left[{}\begin{matrix}2x+7=0\\2x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-7}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-7}{2};\dfrac{1}{2}\right\}\)

6. \(\dfrac{1}{4}x^2+\dfrac{2}{3}x-\dfrac{5}{9}=0\)

\(9x^2+24x-20=0\)

\(9x^2+30x-6x-20=0\)

\(3x\left(3x+10\right)-2\left(3x+10\right)=0\)

\(\left(3x+10\right)\left(3x-2\right)=0\)

\(\left[{}\begin{matrix}3x+10=0\\3x-2=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{-10}{3}\\x=\dfrac{2}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-10}{3};\dfrac{2}{3}\right\}\)

Nguyễn Trúc Mai
1 tháng 6 2018 lúc 19:23

7. \(24\dfrac{8}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(\dfrac{224}{9}-\dfrac{1}{4}x^2-\dfrac{1}{3}x=0\)

\(896-9x^2-12x=0\)

\(-896+9x^2+12x=0\)

\(9x^2+12x-896=0\)

\(9x^2-84x+96x-896=0\)

\(3x\left(3x-28\right)+32\left(3x-28\right)=0\)

\(\left(3x-28\right)\left(3x+32\right)=0\)

\(\left[{}\begin{matrix}3x-28=0\\3x+32=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=\dfrac{-32}{3}\end{matrix}\right.\)

⇒ S \(=\left\{\dfrac{-32}{3};\dfrac{28}{3}\right\}\)

[MINT HANOUE]
Xem chi tiết
Rin Huỳnh
23 tháng 1 2022 lúc 10:58

Pt <=> 1 - x - 2mx = 0

<=> x(2m + 1) = 1

m = -1/2 --> vô nghiệm

m # -1/2 --> x = \(\dfrac{1}{2m+1}\)

pé lầyy
Xem chi tiết
Edogawa Conan
1 tháng 3 2020 lúc 9:27

a) 3x(x - 1) + 2(x - 1) = 0

<=> (3x + 2)(x - 1) = 0

<=> \(\orbr{\begin{cases}3x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=1\end{cases}}\)

Vậy S = {-2/3; 1}

b) x2 - 1 - (x + 5)(2 - x) = 0

<=> x2 - 1 - 2x + x2 - 10 + 5x = 0

<=> 2x2 + 3x - 11 = 0

<=> 2(x2 + 3/2x + 9/16 - 97/16) = 0

<=> (x + 3/4)2 - 97/16 = 0

<=> \(\orbr{\begin{cases}x+\frac{3}{4}=\frac{\sqrt{97}}{4}\\x+\frac{3}{4}=-\frac{\sqrt{97}}{4}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{\sqrt{97}-3}{4}\\x=-\frac{\sqrt{97}-3}{4}\end{cases}}\)

Vậy S = {\(\frac{\sqrt{97}-3}{4}\)\(-\frac{\sqrt{97}-3}{4}\)

d) x(2x - 3) - 4x + 6 = 0

<=> x(2x - 3) - 2(2x - 3) = 0

<=> (x - 2)(2x - 3) = 0

<=> \(\orbr{\begin{cases}x-2=0\\2x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=\frac{3}{2}\end{cases}}\)

Vậy  S = {2; 3/2}

e)  x3 - 1 = x(x - 1)

<=> (x - 1)(x2 + x + 1) - x(x - 1) = 0

<=> (x - 1)(x2 + x +  1 - x) = 0

<=> (x - 1)(x2 + 1) = 0

<=> x - 1 = 0

<=> x = 1

Vậy S = {1}

f) (2x - 5)2 - x2 - 4x - 4 = 0

<=> (2x - 5)2 - (x + 2)2 = 0

<=> (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

<=> (x - 7)(3x - 3) = 0

<=> \(\orbr{\begin{cases}x-7=0\\3x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=7\\x=1\end{cases}}\)

Vậy S = {7; 1}

h) (x - 2)(x2 + 3x - 2) - x3 + 8 = 0

<=> (x - 2)(x2 + 3x - 2) - (x- 2)(x2 + 2x + 4) = 0

<=> (x - 2)(x2 + 3x - 2 - x2 - 2x - 4) = 0

<=> (x - 2)(x - 6) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=6\end{cases}}\)

Vậy S = {2; 6}

Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
1 tháng 3 2020 lúc 9:23

\(a,3x\left(x-1\right)+2\left(x-1\right)=0\)

\(3x.x-3x+2x-2=0\)

\(2x-2=0\)

\(2x=2\)

\(x=1\)

Khách vãng lai đã xóa
Linh Thảo
Xem chi tiết
Lê Trang
3 tháng 9 2020 lúc 12:49

a) \(4x^2-4x=-1\)

\(\Leftrightarrow4x^2-4x+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy \(x=\frac{1}{2}\)

b) \(\left(x-2\right)^2\left(5-2x\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\\left(5-2x\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{5}{2}\end{matrix}\right.\)

Vậy \(x=\left\{2;\frac{5}{2}\right\}\)

c) \(\left(1-2x\right)^2-\left(3x-2\right)^2=0\)

\(\Leftrightarrow\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)

\(\Leftrightarrow\left(3-5x\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-5x=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{5}\\x=1\end{matrix}\right.\)

Vậy \(x=\left\{\frac{3}{5};1\right\}\)

#Học tốt!