Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Ngọc linh
Xem chi tiết
trang
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 16:30

\(a,\Leftrightarrow\left(x-9\right)^2-2\left(x-9\right)+1=0\\ \Leftrightarrow\left(x-9-1\right)^2=0\Leftrightarrow x=10\\ b,Sửa:49x^2-14x\sqrt{5}+5=0\\ \Leftrightarrow\left(7x-\sqrt{5}\right)^2=0\Leftrightarrow x=\dfrac{\sqrt{5}}{7}\)

Julian Edward
Xem chi tiết
Hoàng Tử Hà
27 tháng 1 2021 lúc 20:55

Tui ko biết đề bài có sai hay ko, bởi hệ số khác nhau thì đặt x ra là được, kết ủa là dương vô cùng, ko tồn tại a và b. 

nghia
Xem chi tiết
Toru
23 tháng 9 2023 lúc 18:38

Bài 1.

\(a, (3x-4)^2\)

\(=\left(3x\right)^2-2\cdot3x\cdot4+4^2\)

\(=9x^2-24x+16\)

\(b,\left(1+4x\right)^2\)

\(=1^2+2\cdot1\cdot4x+\left(4x\right)^2\)

\(=16x^2+8x+1\)

\(c,\left(2x+3\right)^3\)

\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot3+3\cdot2x\cdot3^2+3^3\)

\(=8x^3+36x^2+54x+27\)

\(d,\left(5-2x\right)^3\)

\(=5^3-3\cdot5^2\cdot2x+3\cdot5\cdot\left(2x\right)^2-\left(2x\right)^3\)

\(=125-150x+60x^2-8x^3\)

\(e,49x^2-25\)

\(=\left(7x\right)^2-5^2\)

\(=\left(7x-5\right)\left(7x+5\right)\)

\(f,\dfrac{1}{25}-81y^2\)

\(=\left(\dfrac{1}{5}\right)^2-\left(9y\right)^2\)

\(=\left(\dfrac{1}{5}-9y\right)\left(\dfrac{1}{5}+9y\right)\)

Bài 2.

\(a,\left(x-5\right)^2-\left(x+7\right)\left(x-7\right)=8\)

\(\Rightarrow x^2-2\cdot x\cdot5+5^2-\left(x^2-7^2\right)=8\)

\(\Rightarrow x^2-10x+25-\left(x^2-49\right)=8\)

\(\Rightarrow x^2-10x+25-x^2+49=8\)

\(\Rightarrow\left(x^2-x^2\right)-10x=8-25-49\)

\(\Rightarrow-10x=-66\)

\(\Rightarrow x=\dfrac{33}{5}\)

\(b,\left(2x+5\right)^2-4\left(x+1\right)\left(x-1\right)=10\)

\(\Rightarrow\left(2x\right)^2+2\cdot2x\cdot5+5^2-4\left(x^2-1^2\right)=10\)

\(\Rightarrow4x^2+20x+25-4x^2+4=10\)

\(\Rightarrow\left(4x^2-4x^2\right)+20x=10-25-4\)

\(\Rightarrow20x=-19\)

\(\Rightarrow x=\dfrac{-19}{20}\)

#\(Toru\)

Kiều Vũ Linh
23 tháng 9 2023 lúc 18:47

Bài 1

a) (3x - 4)²

= (3x)² - 2.3x.4 + 4²

= 9x² - 24x + 16

b) (1 + 4x)²

= 1² + 2.1.4x + (4x)²

= 1 + 8x + 16x²

c) (2x + 3)³

= (2x)³ + 3.(2x)².3 + 3.2x.3² + 3³

= 8x³ + 36x² + 54x + 27

d) (5 - 2x)³

= 5³ - 3.5².2x + 3.5.(2x)² - (2x)³

= 125 - 150x + 60x² - 8x³

e) 49x² - 25

= (7x)² - 5²

= (7x - 5)(7x + 5)

f) 1/25 - 81y²

= (1/5)² - (9y)²

= (1/5 - 9y)(1/5 + 9y)

Toru
23 tháng 9 2023 lúc 18:52

Bài 3.

\(a,A=x^2-6x+19\)

\(=x^2-6x+9+10\)

\(=\left(x^2-2\cdot x\cdot3+3^2\right)+10\)

\(=\left(x-3\right)^2+10\)

Ta thấy: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-3\right)^2+10\ge10\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: \(Min_A=10\) khi \(x=3\)

\(b,B=-x^2+8x-20\)

\(=-x^2+8x-16-4\)

\(=-\left(x^2-8x+16\right)-4\)

\(=-\left(x^2-2\cdot x\cdot4+4^2\right)-4\)

\(=-\left(x-4\right)^2-4\)

Ta thấy: \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-4\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-4\right)^2-4\le-4\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy \(Max_B=-4\) khi \(x=4\)

\(c,C=4x^2+12x+100\)

\(=4x^2+12x+9+91\)

\(=\left[\left(2x\right)^2+2\cdot2x\cdot3+3^2\right]+91\)

\(=\left(2x+3\right)^2+91\)

Ta thấy: \(\left(2x+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+3\right)^2+91\ge91\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow2x+3=0\Leftrightarrow x=-\dfrac{3}{2}\)

Vậy \(Min_C=91\) khi \(x=\dfrac{-3}{2}\)

\(d,D=25+4x-x^2\)

\(=-x^2+4x-4+29\)

\(=-\left(x^2-2\cdot x\cdot2+2^2\right)+29\)

\(=-\left(x-2\right)^2+29\)

Ta thấy: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+29\le29\forall x\)

Dấu \("="\) xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy \(Max_D=29\) khi \(x=2\)

#\(Toru\)

truong thi nguyet
Xem chi tiết
Minh Bình
Xem chi tiết
乇尺尺のレ
28 tháng 8 2023 lúc 20:31

\(a)ĐK:x\ge-1\\ \Leftrightarrow x+1=2\sqrt{x+1}\\ \Leftrightarrow x^2+2x+1=4x+4\\ \Leftrightarrow x^2+2x-4x+1-4=0\\ \Leftrightarrow x^2-2x-3=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{3;-1\right\}\)

\(b)ĐK:x\ge2\\ \Leftrightarrow2x-4=\sqrt{x-2}\\ \Leftrightarrow4x^2-16x+16=x-2\\ \Leftrightarrow4x^2-16x-x+16+2=0\\ \Leftrightarrow4x^2-17x+18=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{9}{4};2\right\}\)

\(c)ĐK:x\ge3\\ \Leftrightarrow2\sqrt{9\left(x-3\right)}-\dfrac{1}{5}\sqrt{25\left(x-3\right)}-\dfrac{1}{7}\sqrt{49\left(x-3\right)}=20\\ \Leftrightarrow2.3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow6\sqrt{x-3}-\sqrt{x-3}-\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\\ \Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\\ \Leftrightarrow x=25+3\\ \Leftrightarrow x=28\left(tm\right)\)

Vậy \(S=\left\{28\right\}\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 20:18

loading...  loading...  

Nguyễn Ngọc k10
Xem chi tiết
YangSu
7 tháng 7 2023 lúc 12:18

\(9,\left(2x-5\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(2x-5-x-1\right)\left(2x-5+x+1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{6;\dfrac{4}{3}\right\}\)

\(10,\left(x+3\right)^2-x^2=45\)

\(\Leftrightarrow x^2+6x+9-x^2-45=0\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=6\)

Vậy \(S=\left\{6\right\}\)

\(11,\left(5x-4\right)^2-49x^2=0\\ \Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\\ \Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\\ \Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{-2;\dfrac{1}{3}\right\}\)

\(12,16\left(x-1\right)^2-25=0\\ \Leftrightarrow4^2\left(x-1\right)^2-5^2=0\\ \Leftrightarrow\left[4\left(x-1\right)\right]^2-5^2=0\\ \Leftrightarrow\left(4x-4\right)^2-5^2=0\\ \Leftrightarrow\left(4x-4-5\right)\left(4x-4+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-9=0\\4x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{4}\\x=-\dfrac{1}{4}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{1}{4};\dfrac{9}{4}\right\}\)

33. Nguyễn Minh Ngọc
Xem chi tiết
Nguyễn Minh Đăng
26 tháng 10 2020 lúc 21:02

Ta có: \(\left(x-7\right)\left(x^2-9x+20\right)\left(x-2\right)=72\)

\(\Leftrightarrow\left(x^2-9x+20\right)\left(x^2-9x+14\right)=72\)

Đặt \(x^2-9x+17=a\) khi đó:

\(PT\Leftrightarrow\left(a+3\right)\left(a-3\right)=72\)

\(\Leftrightarrow a^2-9-72=0\)

\(\Leftrightarrow a^2=81\Rightarrow\orbr{\begin{cases}a=9\\a=-9\end{cases}}\)

Nếu a = 9 khi đó \(x^2-9x+17=9\)

\(\Leftrightarrow x^2-9x+8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Nếu a = -9 khi đó \(x^2-9x+17=-9\)

\(\Leftrightarrow x^2-9x+26=0\)

\(\Leftrightarrow\left(x^2-9x+\frac{81}{4}\right)+\frac{23}{4}=0\)

\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2=-\frac{23}{4}\left(ktm\right)\)

Vậy \(S=\left\{1;8\right\}\)

Khách vãng lai đã xóa
l҉o҉n҉g҉ d҉z҉
26 tháng 10 2020 lúc 21:03

( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72

⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0

⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0

Đặt t = x2 - 9x + 17

⇔ ( t - 3 )( t + 3 ) - 72

⇔ t2 - 9 - 72 = 0

⇔ t2 - 81 = 0

⇔ ( t - 9 )( t + 9 ) = 0

⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0

⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0

⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0

⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0

⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0

⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0

⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]

Khách vãng lai đã xóa
Nobi Nobita
26 tháng 10 2020 lúc 21:08

\(\left(x-7\right)\left(x^2-9x+20\right)\left(x-2\right)=72\)

\(\Leftrightarrow\left(x-7\right)\left(x-2\right)\left(x^2-9x+20\right)-72=0\)

\(\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72=0\)(1)

Đặt \(x^2-9x+17=t\)

Thay \(t=x^2-9x+17\)vào (1) ta được:

\(\left(t-3\right)\left(t+3\right)-72=0\)

\(\Leftrightarrow t^2-9-72=0\)\(\Leftrightarrow t^2-81=0\)

\(\Leftrightarrow\left(t-9\right)\left(t+9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-9=0\\t+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\end{cases}}\)

TH1: Nếu \(t=9\)\(\Rightarrow x^2-9x+17=9\)

\(\Leftrightarrow x^2-9x+8=0\)\(\Leftrightarrow\left(x^2-x\right)-\left(8x-8\right)=0\)

\(\Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

TH2: Nếu \(t=-9\)\(\Rightarrow x^2-9x+17=-9\)

\(\Leftrightarrow x^2-9x+26=0\)

\(\Leftrightarrow x^2-2.\frac{9}{2}.x+\frac{81}{4}+\frac{23}{4}=0\)

\(\Leftrightarrow\left(x-\frac{9}{2}\right)^2+\frac{23}{4}=0\)

Vì \(\left(x-\frac{9}{2}\right)\ge0\forall x\)\(\Rightarrow\left(x-\frac{9}{2}\right)^2+\frac{23}{4}\ge\frac{23}{4}\)

\(\Rightarrow\)Với \(t=-9\)thì phương trình vô nghiệm 

Vậy \(x=1\)hoặc \(x=8\)

Khách vãng lai đã xóa
Hồ Lê Hoài Tân
Xem chi tiết
Vũ Lê Ngọc Liên
20 tháng 12 2015 lúc 10:21

1 )

X x 17 - X x 8 = 405

X x ( 17 - 8 ) = 405

X x 9 = 405

X = 405 : 9

X = 45

2 ) 

2250 : x + 750 = 8

2250 : x = 8 - 750

2250 : x = ...

Có sai đề không bạn ?