Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
công chúa tiểu tiên
Xem chi tiết
Premis
Xem chi tiết
Xem chi tiết
Vy Thị Hoàng Lan ( Toán...
30 tháng 6 2019 lúc 11:06

1. 

 \(ƯCLN\left(a,b\right)=7\)

\(\Rightarrow a,b\)chia hết cho 7

\(\Rightarrow a,b\in B\left(7\right)\)

\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)

a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)

\(\Rightarrow a=56;b=0.a=0;b=56\)

\(a=7;b=49.a=49;b=7\)

\(a=14;b=42.a=42;b=14\)

\(a=21;b=35.a=35;b=21\)

\(a=b=28\)

b, a.b=490 \(\Rightarrow a< 490;b< 490\)

\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)

          \(a=14;b=35-a=35;b=14\)

c, BCNN (a,b) = 735

\(\Rightarrow a,b\inƯ\left(735\right)\)

\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)

\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)

2. 

a+b=27\(\Rightarrow\)\(a\le27;b\le27\)

ƯCLN(a,b)=3

\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)

BCNN(a,b)=60

\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)

\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)

nguyễn trang
Xem chi tiết
Võ Thạch Đức Tín 1
13 tháng 8 2016 lúc 15:17

Ta có : ƯCLN(a,b)=5 => a = 5m , b = 5n và ƯCLN(m,n)=1  với ( a > b ) => m > n  

=> a.b=5m.5n=25.mn=300

=> mn=300 : 25 = 12

Ta có bảng liệt kê sau : 

m412
n31
a2060
b155
Nguyễn Cao Sơn
13 tháng 10 lúc 8:56

siuuuuu

Nguyễn Thị Kim Anh
Xem chi tiết
Nguyễn Thị Kim Anh
18 tháng 11 2021 lúc 15:39
Mn giúp mik vs
Khách vãng lai đã xóa
Vũ Huy An
Xem chi tiết
Akai Haruma
13 tháng 11 2023 lúc 9:05

a.

Vì $ƯCLN(a,b)=48$ nên đặt $a=48x, b=48y$ với $(x,y)=1$. Ta có:

$5a=13b$

$\Rightarrow 5.48x=13.48y$

$\Rightarrow 5x=13y$

$\Rightarrow 5x\vdots 13; 13y\vdots 5$

$\Rightarrow x\vdots 13; y\vdots 5$. Đặt $x=13m, y=5n$. Do $(x,y)=1$ nên $(n,m)=1$.

Ta có: $5.13m=13.5n\Rightarrow m=n$. Vì $(m,n)=1$ nên $m=n=1$

$\Rightarrow x=13; y=5$

$\Rightarrow x=13.48=624; y=5.48=240$

Akai Haruma
13 tháng 11 2023 lúc 9:07

b. 

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$.

Khi đó:
$BCNN(a,b)=dxy=360$

$ab=dx.dy=d.dxy=6480$

$\Rightarrow d.360=6480$

$\Rightarrow d=18$

$\RIghtarrow xy=360:d=360:18=20$

Do $(x,y)=1$ nên $x,y$ có thể nhận các cặp giá trị là:

$(x,y)=(1,20), (4,5), (5,4), (20,1)$

Đến đây bạn thay vào tìm $a,b$ thôi.

Akai Haruma
13 tháng 11 2023 lúc 9:10

c.

Gọi $ƯCLN(a,b)=d$ thì $a=dx, b=dy$ với $(x,y)=1$. Khi đó:

$BCNN(a,b)=7.ƯCLN(a,b)$

$\Rightarrow dxy=7.d$

$\Rightarrow xy=7$. Mà $(x,y)=1$ nên $x,y$ có thể nhận các giá trị là:
$(x,y)=(1,7), (7,1)$

$\Rightarrow x+y=8$.

$a+b=dx+dy=40=d(x+y)=8d\Rightarrow d=5$

Nếu $(x,y)=(1,7)\Rightarrow a=dx=5.1=5; b=dy=5.7=35$

Nếu $(x,y)=(7,1)\Rightarrow a=dx=5.7=35; b=dy=5.1=5$

 

Lê Nhật Phúc
Xem chi tiết
emlia
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 11 2023 lúc 0:33

ƯCLN(a,b)=5

=>\(a=5\cdot x;b=5y\), với điều kiện là ƯCLN(x;y)=1

\(a\cdot b=5\cdot150=750\)

=>\(x\cdot y=30\)

Ta sẽ có bảng sau:

a1235
x5101525
b3015106
y150755030

=>Các cặp số (a;b) cần tìm sẽ là (5;150); (150;5); (10;75); (75;10); (25;30); (30;25)

Hải Đăng Nguyễn
Xem chi tiết
Hải Đăng Nguyễn
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 17:30

Lời giải:

a. Đặt $a=6x, b=6y$ với $x,y$ là 2 số nguyên tố cùng nhau 

$a>b\Rightarrow x>y$

$BCNN(a,b)=6xy=120$

$\Rightarrow xy=20$
Vì $x>y$ và $x,y$ nguyên tố cùng nhau $(x,y)=(20,1)$ hoặc $(x,y)=(5,4)$

$\Rightarrow (a,b)=(120,6)$ hoặc $(a,b)=(30,24)$

b. Bạn làm tương tự.