Giải PT: \(\left(\sqrt{x+2}-\sqrt{x-2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
Giải PT: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\left(đk:x\ge-2\right)\)
Đặt \(a=\sqrt{x+5},b=\sqrt{x+2}\left(đk:a,b\ge0,a\ne b\right)\)
\(\Rightarrow\left\{{}\begin{matrix}ab=\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x^2+7x+10}\\a^2-b^2=x+5-x-2=3\end{matrix}\right.\)
PT trở thành: \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
\(\Leftrightarrow\left(a-b\right)\left(ab+1-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=1\\b=1\end{matrix}\right.\)
+ Với a=1
\(\Rightarrow\sqrt{x+5}=1\Leftrightarrow x+5=1\Leftrightarrow x=-4\left(ktm\right)\)
+ Với b=1
\(\Rightarrow\sqrt{x+2}=1\Leftrightarrow x+2=1\Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+5}=a\\\sqrt{x+2=b}\end{matrix}\right.\)
Thì được:
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)\left(a-b\right)=0\)
Làm tiếp
\(ĐK:x\ge-2\)
\(PT\Leftrightarrow\dfrac{x+5-x-2}{\sqrt{x+5}+\sqrt{x+2}}\left(1+\sqrt{x^2+7x+10}\right)=3\\ \Leftrightarrow\dfrac{3\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)}{\sqrt{x+5}+\sqrt{x+2}}=3\\ \Leftrightarrow1+\sqrt{\left(x+5\right)\left(x+2\right)}=\sqrt{x+5}+\sqrt{x+2}\\ \Leftrightarrow\left(\sqrt{x+5}-1\right)\left(1-\sqrt{x+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\left(ktm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x=-1\)
giải pt
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
Đk x>= -2
Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\Rightarrow\sqrt{x^2+7x+10}=a+b;a^2-b^2=x+5-x-2=3\)
pt <=> \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
<=> \(\left(a-b\right)\left(ab+1\right)=\left(a-b\right)\left(a+b\right)\)
<=> \(\left(a-b\right)\left(ab+1\right)-\left(a-b\right)\left(a+b\right)=0\)
<=> \(\left(a-b\right)\left(ab+1-a-b\right)=0\)
<=> \(\left(a-b\right)\left(b-1\right)\left(a-1\right)=0\)
=> a = b hoặc b = 1 hoặc a = 1
(+) a = b => x + 5 = x +2 => 0x = -3 (loại )
(+) a = 1 => x + 5 = 1 => x = -4 (loại )
(+) b = 1 => x + 2 = 1=> x = -1 ( TM)
Vậy x = -1 là nghiệm của pt
giải pt: \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
đặt \(\sqrt{x+5}=a\);\(\sqrt{x+2}=b\) => ab=\(\sqrt{x^2+7x+10}\) và \(a^2-b^2=3\)
do đó pt trở thành \(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\left(a-b\right)\left(1+ab\right)-\left(a-b\right)\left(a+b\right)=0\)
\(\left(a-b\right)\left(1+ab-a-b\right)=0\)
đến đây tự giải tiếp nhé
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)=\left(\sqrt{x+5}+\sqrt{x+2}\right)\left(\sqrt{x+5}-\sqrt{x+2}\right)\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{\left(x+2\right)\left(x+5\right)}-\sqrt{x+5}-\sqrt{x+2}\right)=0\)
\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}-1\right)\left(\sqrt{x+2}-1\right)=0\)
Tự làm tiếp nhé ^_^
Giải pt
\(1)4x^2+\sqrt{3x+1}+5=13x\)
\(2)7x^2-13x+8=2x^2.\sqrt[3]{x\left(1+3x-3x^2\right)}\)
\(3)x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(4)x^3-5x^2+4x-5=\left(1-2x\right)\sqrt[3]{6x^2-2x+7}\)
\(5)8x^2-13x+7=\left(1+\dfrac{1}{x}\right)\sqrt[3]{3x^2-2}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
giải pt
\(\frac{2\left(x-\sqrt{2}\right)\left(x-\sqrt{3}\right)}{\left(1-\sqrt{2}\right)\left(1-\sqrt{3}\right)}+\frac{3\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}-\sqrt{3}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{2}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)}\)=3x-1
giải pt \(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
\(\sqrt{3x^2-6x-6}=3\sqrt{\left(2-x\right)^5}+\left(7x-19\right)\sqrt{2-x}\)
Điều kiện: \(\hept{\begin{cases}3x^2-6x-6\ge0\\2-x\ge0\end{cases}}\)
\(\Rightarrow x\le1-\sqrt{3}\)
Ta có:
\(\frac{\sqrt{3x^2-6x-6}}{\sqrt{2-x}}=3\left(2-x\right)^2+\left(7x-19\right)\) (điều kiện \(x\le\frac{5}{6}-\frac{\sqrt{109}}{6}\))
\(\Leftrightarrow\frac{3x^2-6x-6}{2-x}=9x^4-30x^3-17x^2+70x+49\)
\(\Leftrightarrow\left(x+1\right)\left(3x-8\right)\left(3x^3-11x^2+4+13\right)=0\)
(Kết hợp với điều kiện ta suy ra)
\(\Leftrightarrow x=-1\)
x = 1 nha bạn
Cách giải y hệt bạn alibaba nguyễn. Các bạn làm theo nha
Đúng 100%
Đúng 100%
Giải\(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(1+\sqrt{x^2+7x+10}\right)=3\)
Đặt từng cái căn là a và b, đưa về dạng
\(\left(a-b\right)\left(ab+1\right)=a^2-b^2\)
Chuyển vế đưa về phương trình tích là xong
giải phương trình a.\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
b.\(\left(\sqrt{x+4}-2\right)\left(\sqrt{4-x}+2\right)=2x\)
Câu 1:
ĐK: \(x\geq -2\)
Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)
\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)
PT trở thành:
\((a-b)(1+ab)=3\)
\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)
\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)
\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)
\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)
Vì \(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.
Câu 2:
ĐK: \(-4\leq x\leq 4\)
Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)
Xét $(*)$
Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:
\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)
\(\Rightarrow 4(b+1)^2+b^2=8\)
\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)
\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)
\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)
Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)