Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn mai thùy trâm
Xem chi tiết
Huy Anh Lê
Xem chi tiết
Vũ Đình Thái
15 tháng 10 2020 lúc 21:02

Bài 1:

a)\(F=x^2+26y^2-10xy+14x-76y+59\)

         \(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)

        \(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)

          \(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)

 Để Fmin=1 thì y=3;x=8

b)\(H=m^2-4mp+5p^2+10m-22p+28\)

         \(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)

         \(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)

           \(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)

Để Hmin=2 thì p=1;m=-3

Khách vãng lai đã xóa
Boruto MB
Xem chi tiết
ILoveMath
3 tháng 12 2021 lúc 10:17

\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)

\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)

Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:00

Câu 2: 

a: ĐKXĐ: \(x\ne1\)

Vũ Thị Huyền
Xem chi tiết
hoàng long tuấn
28 tháng 3 2019 lúc 20:55

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

Học ngu lắm
Xem chi tiết
HT.Phong (9A5)
15 tháng 10 2023 lúc 11:01

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

Hoàng Ninh
Xem chi tiết
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:47

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

Khách vãng lai đã xóa
Tran Le Khanh Linh
9 tháng 3 2020 lúc 15:55

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

Khách vãng lai đã xóa
Hồ Lê Mỹ Ngọc
Xem chi tiết
Đoàn Đức Hà
9 tháng 10 2021 lúc 17:29

2) 

\(A=2x^2+2x+y^2-2xy=x^2-2xy+y^2+x^2+2x+1-1\)

\(=\left(x-y\right)^2+\left(x+1\right)^2-1\ge-1\)

Dấu \(=\)khi \(\hept{\begin{cases}x-y=0\\x+1=0\end{cases}}\Leftrightarrow x=y=-1\).

Vậy GTNN của \(A\)là \(-1\)đạt tại \(x=y=-1\).

\(B=2a^2+b^2+c^2-ab+ac+bc\)

\(2B=4a^2+2b^2+2c^2-2ab+2ac+2bc\)

\(=a^2-2ab+b^2+a^2+2ac+c^2+b^2+2bc+c^2+2a^2\)

\(=\left(a-b\right)^2+\left(a+c\right)^2+\left(b+c\right)^2+2a^2\ge0\)

Dấu \(=\)khi \(a=b=c=0\).

Vậy GTNN của \(B\)là \(0\)đạt tại \(a=b=c=0\).

Khách vãng lai đã xóa
Đoàn Đức Hà
9 tháng 10 2021 lúc 17:29

1. 

a) \(2x^2+2x+1=x^2+x^2+2x+1=x^2+\left(x+1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+1=0\end{cases}}\)(vô nghiệm) 

suy ra đpcm

b) \(x^2+y^2+2xy+2y+2x+2=\left(x+y\right)^2+2\left(x+y\right)+1+1=\left(x+y+1\right)^2+1>0\)

c) \(3x^2-2x+1+y^2-2xy+1=x^2-2xy+y^2+x^2-2x+1+x^2+1\)

\(=\left(x-y\right)^2+\left(x-1\right)^2+x^2+1>0\)

d) \(3x^2+y^2+10x-2xy+26=x^2-2xy+y^2+x^2+10x+25+x^2+1\)

\(=\left(x-y\right)^2+\left(x+5\right)^2+x^2+1>0\)

Khách vãng lai đã xóa
Nam
Xem chi tiết
Nguyễn Thị Yến Vy
28 tháng 7 2017 lúc 16:44

ta có:-B=x2+2y2+2xy-2x+2y+15

=x2+2x(y-1)+(y-1)2+y2+4y+14

=(2+y-1)2+(y+2)2+11>(=)11

zeno_mana
28 tháng 7 2017 lúc 16:51

B=-(X^2+2y^2+2xy-2x+2y+15)

B=-(x^2+y^2+1+2xy-2x-2y+y^2+4y+14)

B=-((x+y-1)^2+(y+2)^2+10)

B=-(x+y-1)^2-(y+2)^2-10 bé hơn hoặc bằng -10

đoạn sau bạn tự giải nhe ^^

BIỂN VŨ
Xem chi tiết