Tìm các số nguyên x để 6x- 10 chia hết cho 2x - 3
a)tìm số nguyên x để f(x)=x^2-5x+9 chi hết cho g(x)=x-3
b)tìm số nguyên x để f(x)=2x^3-x^2+6x+2 chia hết cho đa thức g(x)=2x-1
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
tìm giá trị nguyên dương của x để 6x2-11x+6 chia hết cho 2x-3
tìm giá trị nguyên của x để x2+2x-6 chia hết cho x+4
tìm số nguyên n để giá trị của 2n2+3n+3 chia hết cho giá trị của 2n-1
Tìm số nguyên x để:
a)(3x+2) chia hết cho (1-x)
b)(6x-1) chia hết cho (2x+3)
a)3x+2 chia hết cho 1-x
3x-3+5 chia hết cho 1-x
-3(1-x)+5 chia hết cho 1-x
=>5 chia hết cho 1-x hay 1-xEƯ(5)={1;-1;5;-5}
=>xE{0;-2;-4;6}
b)6x-1 chia hết cho 2x+3
6x+9-10 chia hết cho2x+3
3(2x+3)-10 chia hết cho 2x+3
=>10 chia hết cho 2x+3 hay 2x+3EƯ(10)={1;-1;2;-2;5;-5;10;-10}
=>2xE{-2;-4;-1;-5;2;-8;7;-13}
=>xE{-1;-2;1;-4}
Bài 1:Tìm số a để đa thức
a)(2x^3-2x^2+a+x)chia hết cho(x+2)
b)(x^4-x^3+6x^2-x+a)chia hết cho(x^2-x+5)
Bài 2:Tìm giá trị nguyên của n để giá chị của biểu thức
a)(3n^3+10n^2-5)chia hết cho (3n+1)
b(2n^2+3n+3)chia hết cho(2n-1)
Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Tìm các số nguyên để phép chia sau là phép chia hết : x^2 +2x^2 +15 chia hết cho x+3
Ta có: \(x^2+2x^2+15=3x^2+15\)
Thực hiện phép chia, ta được:
Suy ra để \(x^2+2x^2+15\) chia hết cho x + 3 thì - (9 - y)x + (15 - 3y) = 0
Hay - (9 - y)x = 15 - 3y
Khi đó \(x=\dfrac{15-3y}{-9+y}\) hay \(\left(15-3y\right)⋮\left(-9+y\right)\)
Hay \(\left[\left(15-3y\right)-3\left(-9+y\right)\right]⋮\left(-9+y\right)\)
Hay \(42⋮\left(-9+y\right)\)
Khi đó (-9 + y) ϵ Ư(42) = {1; -1; 2; -2; 3; -3; 6; -6; 7; -7; 14; -14; 21; -21; 42; -42}
Xét bảng
-9 + y | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 | 7 | -7 | 14 | -14 | 21 | -21 | 42 | -42 |
y | 10 | 8 | 11 | 7 | 12 | 6 | 15 | 3 | 16 | 2 | 23 | -5 | 30 | -12 | 51 | -33 |
\(x=\dfrac{15-3y}{-9+y}\) | -15 | 9 | -9 | 3 | -7 | 1 | -5 | -1 |
-33/7 (loại) |
-9/7 (loại) | -27/7 (loại) | -15/7 (loại) | -25/7 (loại) | -17/7 (loại) | -23/7 (loại) | -19/7 (loại) |
Vậy để \(x^2+2x^2+15\) chia hết cho x + 3 thì x ϵ {-15; 9; -9; 3; -7; 1; -5; -1}
Bài 5: Tìm a , b để các đa thức sau:
1) x^4+6x^3+7x^2-6x+a chia hết cho x2+3x-1
2) x^4-x^3+6x^2-x+a chia hết cho x^2- x+5
3) x^3+3x^2+5x+a chia hết cho x+3
4) x^3+2x^2-7x+a chia hết cho 3x -1
5) 2x^2+ax+1 chia cho x-3 dư 4
3: \(\Leftrightarrow a-15=0\)
hay a=15
Tìm các số nguyên x sao cho:6x + 6 chia hết cho 2x + 1
6x + 6 ⋮ 2x + 1
=> 6x + 3 + 3 ⋮ 2x + 1
=> 3(2x + 1) + 3 ⋮ 2x + 1
=> 3 ⋮ 2x + 1
=> 2x + 1 thuộc Ư(3)
=> 2x + 1 thuộc {-1; 1; -3; 3}
=> 2x thuộc {-2; 0; -4; 2}
=> x thuộc {-1; 0; -2; 1}
\(6x+6⋮2x+1\)
\(=>3.\left(2x+1\right)+3⋮2x+1\)
Do\(3.\left(2x+1\right)⋮2x+1\)
\(=>3⋮2x+1\)
\(=>2x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(=>x\in\left\{-2;-1;0;1\right\}\)
Ta có: 6x+6=3(2x+1)+3
Để 6x+6 chia hết cho 2x+1 thì 3(2x+1)+3 chia hết cho 2x+1
Mà x nguyên => 2x+1 nguyên
=> 2x+1 thuộc Ư (3)={-3;-1;1;3}
Ta có bảng
2x+1 | -3 | -1 | 1 | 3 |
2x | -4 | -2 | 0 | 2 |
x | -2 | -1 | 0 | 1 |
a,tìm số tự nhiên n để n2 +3 chia hết cho n+1.
b,tìm các cặp số nguyên x,y sao cho (2x+1).(y-2)=10.