Tìm nguyên hàm \(I=\int\sqrt{x+1}dx\)
Tính nguyên hàm của:
1, \(\int\)\(\dfrac{x^3}{x-2}dx\)
2, \(\int\)\(\dfrac{dx}{x\sqrt{x^2+1}}\)
3, \(\int\)\((\dfrac{5}{x}+\sqrt{x^3})dx\)
4, \(\int\)\(\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx\)
5, \(\int\)\(\dfrac{dx}{\sqrt{1-x^2}}\)
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)
Tìm nguyên hàm của hàm số : \(\int\dfrac{x\ln\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}dx\)
Lời giải:
Đặt \(u=\ln (x+\sqrt{x^2+1}); dv=\frac{1}{\sqrt{x^2+1}}dx\)
\(\Rightarrow du=\frac{dx}{\sqrt{x^2+1}}; v=\int \frac{x}{\sqrt{x^2+1}}dx=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\sqrt{x^2+1}\)
\(\Rightarrow \int \frac{x\ln (x+\sqrt{x^2+1})}{\sqrt{x^2+1}}dx=\int udv=uv-vdu=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-\int dx\)
\(=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-x+C\)
Tìm các nguyên hàm sau:
a) \(\int (3x^2-2x-4)dx \)
b) \(\int(\sin3x-\cos4x)dx \)
c) \(\int(e^{-3x}-4^x)dx \)
d) \(\int\ln(x)dx \)
e) \(\int(x.e^x)dx \)
f) \(\int(x+1).\sin(x)dx \)
g) \(\int x.\ln(x)dx \)
\(\int\left(3x^2-2x-4\right)dx=x^3-x^2-4x+C\)
\(\int\left(sin3x-cos4x\right)dx=-\dfrac{1}{3}cos3x-\dfrac{1}{4}sin4x+C\)
\(\int\left(e^{-3x}-4^x\right)dx=-\dfrac{1}{3}e^{-3x}-\dfrac{4^x}{ln4}+C\)
d. \(I=\int lnxdx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=x\end{matrix}\right.\)
\(\Rightarrow u=x.lnx-\int dx=x.lnx-x+C\)
e. Đặt \(\left\{{}\begin{matrix}u=x\\dv=e^xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=e^x\end{matrix}\right.\)
\(\Rightarrow I=x.e^x-\int e^xdx=x.e^x-e^x+C\)
f.
Đặt \(\left\{{}\begin{matrix}u=x+1\\dv=sinxdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=dx\\v=-cosx\end{matrix}\right.\)
\(\Rightarrow I=-\left(x+1\right)cosx+\int cosxdx=-\left(x+1\right)cosx+sinx+C\)
g.
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\dfrac{dx}{x}\\v=\dfrac{1}{2}x^2\end{matrix}\right.\)
\(\Rightarrow I=\dfrac{1}{2}x^2.lnx-\dfrac{1}{2}\int xdx=\dfrac{1}{2}x^2.lnx-\dfrac{1}{4}x^2+C\)
Tìm các nguyên hàm sau :
a) \(I_1=\int\frac{\sqrt{1+\ln x}}{x}dx\)
b) \(I_2=\int\frac{e^{2x}}{\sqrt[4]{e^x+1}}dx\)
c) \(I_3=\int x^2e^{x^3+6}dx\)
a) Đặt \(1+\ln x=t\) khi đó \(\frac{dx}{x}=dt\) và do đó
\(I_1=\int\sqrt{t}dt=\frac{2}{3}t^{\frac{3}{2}}+C=\frac{2}{3}\sqrt{\left(1+\ln x\right)^3}+C\)
b) Đặt \(\sqrt[4]{e^x+1}=t\) khi đó \(e^x+1=t^4\Rightarrow e^x=t^4-1\) và \(e^xdx=4t^3dt\) , \(e^{2x}dx=e^x.e^xdx=\left(t^4-1\right)4t^3dt\)
Do đó :
\(I_2=4\int\frac{t^3\left(t^4-1\right)}{t}dt=4\int\left(t^6-t^2\right)dt=4\left[\frac{t^7}{7}-\frac{t^3}{3}\right]+C\)
\(=4\left[\frac{1}{7}\sqrt[4]{\left(e^x+1\right)^7}-\frac{1}{3}\sqrt[4]{\left(e^x+1\right)^3}\right]+C\)
c) Lưu ý rằng \(x^2dx=\frac{1}{3}d\left(x^3+C\right)\) do đó :
\(I_3=\int x^2e^{x^{3+6}dx}=\frac{1}{3}\int e^{x^{3+6}}d\left(x^3+6\right)=\frac{1}{3}e^{x^{3+6}}+C\)
Tìm các nguyên hàm sau đây bằng các phép hữu tỉ hóa
a) \(I_1=\int\frac{e^{3x}}{e^2+2}dx\)
b) \(I_2=\int\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}dx\)
c) \(I_1=\int\frac{1}{x^2-1}\left[\sqrt[3]{\left(\frac{x+1}{x-1}\right)^5}\right]dx\)
a) Dùng phương pháp hữu tỉ hóa "Nếu \(f\left(x\right)=R\left(e^x\right)\Rightarrow t=e^x\)" ta có \(e^x=t\Rightarrow x=\ln t,dx=\frac{dt}{t}\)
Khi đó \(I_1=\int\frac{t^3}{t+2}.\frac{dt}{t}=\int\frac{t^2}{t+2}dt=\int\left(t-2+\frac{4}{t+2}\right)dt\)
\(=\frac{1}{2}t^2-2t+4\ln\left(t+2\right)+C=\frac{1}{2}e^{2x}-2e^x+4\ln\left(e^x+2\right)+C\)
b) Hàm dưới dấu nguyên hàm
\(f\left(x\right)=\frac{\sqrt{x}}{x+\sqrt[3]{x^2}}=R\left(x;x^{\frac{1}{2}},x^{\frac{2}{3}}\right)\)
q=BCNN(2;3)=6
Ta thực hiện phép hữu tỉ hóa theo :
"Nếu \(f\left(x\right)=R\left(x:\left(ã+b\right);\left(ax+b\right)^{r2},....\right),r_k=\frac{P_k}{q_k}\in Q,k=1,2,...,m\Rightarrow t=\left(ax+b\right)^{\frac{1}{q}}\),q=BCNN \(\left(q_1,q_2,...,q_m\right)\)"
=> \(t=x^{\frac{1}{6}}\Rightarrow x=t^{6,}dx=6t^5dt\)
Khi đó nguyên hàm đã cho trở thành :
\(I_2=\int\frac{t^3}{t^6-t^4}6t^{5dt}=\int\frac{6t^4}{t^2-1}dt=6\int\left(t^2+1+\frac{1}{t^2-1}\right)dt\)
\(=6\int\left(t^2+1\right)dt+2\int\frac{dt}{\left(t-1\right)\left(t+1\right)}=2t^3+6t+3\int\frac{dt}{t-1}-3\int\frac{dt}{t+1}\)
\(=2t^2+6t+3\ln\left|t-1\right|-3\ln\left|t+1\right|+C=2\sqrt{x}+6\sqrt[6]{x}+3\ln\left|\frac{\sqrt[6]{x-1}}{\sqrt[6]{x+1}}\right|+C\)
c) Hàm dưới dấu nguyên hàm có dạng :
\(f\left(x\right)=R\left(x;\left(\frac{x+1}{x-1}\right)^{\frac{2}{3}};\left(\frac{x+1}{x-1}\right)^{\frac{5}{6}}\right)\)
q=BCNN (3;6)=6
Ta thực hiện phép hữu tỉ hóa được
\(t=\left(\frac{x+1}{x-1}\right)^{\frac{1}{6}}\Rightarrow x=\frac{t^6+1}{t^6-1},dx=\frac{-12t^5}{\left(t^6-1\right)^2}dt\)
Khi đó hàm dưới dấu nguyên hàm trở thành
\(R\left(t\right)=\frac{1}{\left(\frac{t^6+1}{t^6-1}\right)^2-1}\left[t^4-t^5\right]=\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right)\)
Do đó :
\(I_3=\int\frac{\left(t^6-1\right)^2}{4t^6}\left(t^4-t^5\right).\frac{-12t^5}{\left(t^6-1\right)}dt=3\int\left(t^4-t^3\right)dt\)
\(=\frac{5}{3}t^5-\frac{3}{4}t^4+C=\frac{3}{5}\sqrt[6]{\left(\frac{x+1}{x-1}\right)^5}-\frac{3}{4}\sqrt[3]{\left(\frac{x+1}{x-1}\right)^2}+C\)
Tìm nguyên hàm của các hàm số sau:
a) \(\int\left(6x-\dfrac{1}{sin^2x}+1\right)dx\)
b) \(\int\dfrac{x^3+2x^2-1}{x^2}dx\)
Tính nguyên hàm \(I=\int{\sqrt{2x-x^2}}dx\)
$I=\int \sqrt{1-(1-x)^2}$
Đặt $x-1=\sin t$ thì $dx=\cos tdt$. Suy ra
$$I=\int \sqrt{1-\sin^2 t}\cos tdt=\int \cos^2tdt=\int \frac{1+\cos(2t)}{2}dt$$
$$I=\frac{t}{2}+\frac{\sin(2t)}{4}+C$$
Thay $t=\arcsin(x-1)$ ta có nguyên hàm I.
Tìm các nguyên hàm sau:
a) \(I_1=\int\frac{\left(x^2+3\right)dx}{\sqrt{\left(2x-5\right)^3}}\)
b)\(I_2=\int\frac{dx}{\left(3x-1\right)\ln\left(3x-1\right)}\)
c) \(I_3=\int\frac{\left(x^2+1\right)dx}{\sqrt{x^6-7x^4+x^2}}\)
a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)
Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)
\(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)
Trở về biến x, thu được :
\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)
b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)
c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)
Đặt \(x-\frac{1}{x}=t\)
\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)
\(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)
tính nguyên hàm sau:
\(\int\sqrt{4x-x^2}dx\)
\(\int\sqrt{4x-x^2}dx=\int\sqrt{4-\left(x-2\right)^2}dx=\int\sqrt{4-\left(x-2\right)^2}d\left(x-2\right)\)
\(=\dfrac{\left(x-2\right)\sqrt{4-\left(x-2\right)^2}}{2}+arcsin\left(\dfrac{x-2}{2}\right)+C\)
Tìm các nguyên hàm sau :
a)\(I_1=\int\left(1+\sqrt{x}\right)^{10}dx\)
b) \(I_2=\int\frac{xdx}{\sqrt[3]{x^2+a}}\)
c) \(I_3=\int\frac{x^2}{\sqrt{x^6+6}}\)
a) Ta thực hiện phép đổi biến :
\(1+\sqrt{x}=t\) ; \(x=\left(t-1\right)^2\) ; \(dx=2\left(t-1\right)dt\)
Khi đó \(\left(1+\sqrt{x}\right)^{10}dx=t^{10}.2\left(t-1\right)dt\)
tức là :
\(I_1=2\int\left(t^{11}-t^{10}\right)dt=2\int t^{11}dt-2\int t^{10}dt=2\left(\frac{t^{12}}{12}-\frac{t^{11}}{11}\right)+C\)
\(=\frac{1}{66}t^{11}\left(11t-12\right)+c\)
\(=\frac{1}{66}\left(1+\sqrt{x}\right)^{11}\left[11\sqrt{x}-1\right]+C\)
b) Đặt \(x^2+a=t\)
Ta có \(2xdx=dt\)
\(I_2=\frac{1}{2}\int\frac{dt}{\sqrt[3]{t}}=\frac{1}{2}\int t^{-\frac{1}{3}}dt=\frac{1}{2}.\frac{3}{2}t^{\frac{2}{3}}+C=\frac{3}{4}\sqrt[3]{\left(x^2+a\right)^2+C}\)
c) Đặt \(x^3=t\Rightarrow3x^2dx=dt\)
và \(I_3=\frac{1}{3}\int\frac{dt}{\sqrt{t^2+6}}=\frac{1}{3}\ln\left[t+\sqrt{t^2+6}\right]+C\)
\(=\frac{1}{3}\ln\left[x^2+\sqrt{x^2+6}\right]+C\)