Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Nguyễn Trần Thành Đạt
20 tháng 4 2017 lúc 17:18

a) Hai tam giác vuông ABH và ACK có:

AB = AC(gt)

Góc A chung.

nên ∆ABH = ∆ACK(Cạnh huyền- Góc nhọn)

suy ra AH = AK.

b) Hai tam giác vuông AIK và AIH có:

AK = AH(cmt)

AI cạnh chung

Nên ∆AIK = ∆AIH(cạnh huyền- cạnh góc vuông)

Suy ra ˆIAKIAK^=ˆIAHIAH^

Vậy AI là tia phân giác của góc A.

Nguyễn Thị Thảo
20 tháng 4 2017 lúc 22:32

a) Hai tam giác vuông ABH và ACH có:

Tam giác ABC cân tại A ⇒ AB = AC

AH cạnh chung.

Nên ∆ABH = ∆ACH(Cạnh huyền – cạnh góc vuông)

Suy ra HB = HC

b)∆ABH = ∆ACH (Câu a)

Suy ra ∠BAH = ∠CAH (Hai góc tương ứng)

Đạt Legend
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 19:39

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

góc KBC=góc HCB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC can tại I

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác của góc BIC

c: Xét ΔABC có AK/AB=AH/AC

nên KH//BC

Sách Giáo Khoa
Xem chi tiết
Nguyễn Trần Thành Đạt
20 tháng 4 2017 lúc 17:14

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Giải bài 70 trang 141 Toán 7 Tập 1 | Giải bài tập Toán 7

Nguyễn Thị Thảo
20 tháng 4 2017 lúc 22:24

a) ∆ABC cân, suy ra ˆB1=ˆC1B1^=C1^

⇒ˆABM=ˆACN⇒ABM^=ACN^

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACNABM^=ACN^

BM = ON (gt)

Suy ra ˆM=ˆNM^=N^

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆNM^=N^ (CM từ câu a)

Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2B2^=C2^

ˆB2=ˆB3;ˆC2=ˆC3B2^=B3^;C2^=C3^ (đối đỉnh)

Nên ˆB3=ˆC3B3^=C3^ .

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=600BAC^=600 và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=600BAC^=600 nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=1200ABM^=ACN^=1200 (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=1800−12002=300M^=BAM^=1800−12002=300 .

Suy ra ˆANM=ˆAMN=300ANM^=AMN^=300 .

ˆMAN=1800−(ˆAMN+ˆANM)=1800−2.300=1200MAN^=1800−(AMN^+ANM^)=1800−2.300=1200

Vậy ∆AMN có ˆM=ˆN=300;ˆA=1200.M^=N^=300;A^=1200.

+∆BHM có: ˆM=300M^=300 nên ˆB2=600B2^=600 (hai góc phụ nhau)

Suy ra ˆB3=600B3^=600

Tương tự ˆC3=600C3^=600

Tam giác OBC có ˆB3=ˆC3=600B3^=C3^=600 nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).

Phạm Thảo Vân
9 tháng 2 2018 lúc 20:20

a) ∆ABC cân, suy ra ˆB1=ˆC1

⇒ˆABM=ˆACN

∆ABM và ∆CAN có:

AB = AC (gt)

ˆABM=ˆACN

BM = ON (gt)

Suy ra ˆM=ˆN

=>∆AMN là tam giác cân ở A.

b) Hai tam giác vuông ∆BHM và ∆CKN có :

BM = CN (gt)

ˆM=ˆN (CM từ câu a)

Nên ∆BHM = ∆CHN (cạnh huyền, góc nhọn)

Suy ra BH = CK.

c) Theo câu (a) ta có tam giác AMN cân ở A nên AM = AN (*)

Theo câu b ta có ∆BHM = ∆CKN nên suy ra HM = KN (**).

Do đó AH = AM – HM = AN – KN (theo (*) và (**)) = AK

Vậy AH = AK.

d) ∆BHM = ∆CKN suy ra ˆB2=ˆC2

ˆB2=ˆB3;ˆC2=ˆC3 (đối đỉnh)

Nên ˆB3=ˆC3

Vậy ∆OBC là tam giác cân.

e) Khi ˆBAC=60o và BM = CN = BC.

+Tam giác cân ABC có ˆBAC=60o nên là tam giác đều.

Do đó: AB = BC = AC = BM = CN

ˆABM=ˆACN=120o (cùng bù với 600)

∆ABM cân ở B nên ˆM=ˆBAM=180o−120o / 2=30o

Suy ra góc ANM = góc AMN=30o

Và góc MAN=1800−(góc AMN+góc ANM)=1800−2.30o=120o

Vậy ∆AMN có góc M = góc N=30o ; góc A=120o

+∆BHM có: góc M=30o nên góc B2 = 60o (hai góc phụ nhau)

Suy ra góc B3=60o

Tương tự góc C3=60o

Tam giác OBC có góc B3 = góc C3=60o nên tam giác OBC là tam giác đều.

(Tam giác cân có một góc bằng 600 nên là tam giác đều).



Nguyễn Quốc Khánh
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Five centimeters per sec...
Xem chi tiết
Kurosaki Akatsu
19 tháng 5 2017 lúc 9:26

Xét tam giác AKC và tam giác AHB có :

Góc A chung

AC = AB (tam giác ABC đều) 

=> Tam giác AKC = Tam giác AHB

=> AK = AH

Ta có :

BH là đường cao của AC

CK là đường cao của AB 

Mà 2 đường cắt nhau tại I

=> AI cũng là đường cao của BC

Mặt khác , tam giác ABC cân tại A

=> AI là đường cao và cũng là đường phân giác

Parkour Lee
19 tháng 5 2017 lúc 9:30

Xét tam giác AHB và AKC có :

Góc h = k = 90 độ

ab = ac ( tam giac abc cân )

chung góc  a

=> tam giác AHB = AKC ( ch - gnh )

=>  ah = ak ( 2 cạnh tương ứng ) 

Xét tam giác aki và ahi có : 

k = h ( = 90 độ )

ah = ak

ai chung 

=> tam giác aki = ahi ( ch - cgv )

=> góc kai = hai 

=> ai la phan giac

Ngocanh168 Sv2
Xem chi tiết
응 우옌 민 후엔
3 tháng 5 2019 lúc 10:22

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

T.Ps
3 tháng 5 2019 lúc 10:50

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

Đỗ Thị Dung
3 tháng 5 2019 lúc 11:50

Bài 1: a, áp dụng định lí py-ta-go vào t.giác vuông ta có: 

                      \(BC^2=AC^2+AB^2\)

=> \(AC^2=BC^2-AB^2\)

=> \(AC^2\)=225-81=144

=>AC=12 (cm)

vậy AC=12 cm

b, xét 2 tam giác vuông ABD và EBD có: 

           BD cạnh chung

          BA=BE(gt)

=> \(\Delta ABD=\Delta EBD\)(cạnh huyền-cạnh góc vuông)

c, ta có: \(\Delta ADH=\Delta EDC\)(cạnh góc vuông-góc nhọn)

=> AH=EC(2 cạnh tương ứng)

Mà AB=EB(câu b) => HB=CB

=> \(\Delta HBC\)cân tại B

d, trong tam giác vuông ADH có: AD<DH(vì cạnh huyền lớn hơn cạnh góc vuông) mà DH=DC=> DC>AD hay AD<DC đpcm

A B C E D d 9cm 15cm H

Buì Đức Quân
Xem chi tiết
Trần Hà trang
4 tháng 5 2019 lúc 18:05

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

Trần Hà trang
4 tháng 5 2019 lúc 18:08

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

Nguyễn Lê Phước Thịnh
27 tháng 8 2022 lúc 13:11

Câu 4: 

a: Xét ΔABD vuông tại B và ΔAED vuông tại E có

AD chung

góc BAD=góc EAD

Do đó: ΔBAD=ΔEAD
b: Ta có: AB=AE

DB=DE

Do đó: AD là đường trung trực của BE

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

góc BDF=góc EDC

Do đó: ΔBDF=ΔEDC

Suy ra: BF=EC

Học học nữa học mãi
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 5 2023 lúc 0:47

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc BAH chung

=>ΔAHB=ΔAKC

=>AH=AK

=>ΔAHK cân tại A

b: Xet ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chug

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM vuông góc BC

nen IM là phân giác của góc BIC

c: Xét ΔABC có AK/AB=AH/AC

nên HK//BC