Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Lợi
Xem chi tiết
Trung Nguyen
3 tháng 3 2021 lúc 23:36

\(f\left(x\right)=\dfrac{x^2-1}{x^2}=1-\dfrac{1}{x^2}\)

\(\int f\left(x\right)dx=\int\left(1-\dfrac{1}{x^2}\right)dx=\int1dx-\int x^{-2}dx\)

=\(x-\dfrac{x^{-2+1}}{-2+1}+C=x-\dfrac{x^{-1}}{-1}+C=x+\dfrac{1}{x}+C\)

C=-1 ta được phương án A(ko tm câu hỏi)

C=0 ta được phương án B(ko tm câu hỏi)

C=2 ta được phương án C(ko tm câu hỏi)

=>chọn D

Huỳnh Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 14:23

a: f(-1/2)=17/4

f(5)=29

Nguyễn Hoàng Minh
19 tháng 12 2021 lúc 14:23

\(a,f\left(-\dfrac{1}{2}\right)=\dfrac{1}{4}+4=\dfrac{17}{4}\\ f\left(5\right)=25+4=29\\ b,f\left(x\right)=10=x^2+4\Leftrightarrow x^2=6\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{6}\\x=-\sqrt{6}\end{matrix}\right.\)

Luân Trần
Xem chi tiết
Akai Haruma
15 tháng 3 2021 lúc 13:42

Lời giải:

\(\int f(x)dx=\int \frac{x^2+2x}{x+1}dx=\int \frac{(x+1)^2-1}{x+1}dx=\int (x+1-\frac{1}{x+1})dx\)

\(=\int (x+1)dx-\int \frac{1}{x+1}dx=\frac{x^2}{2}+x-\ln |x+1|+c\)

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:16

2.

\(I=\int e^{3x}.3^xdx\)

Đặt \(\left\{{}\begin{matrix}u=3^x\\dv=e^{3x}dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=3^xln3dx\\v=\dfrac{1}{3}e^{3x}\end{matrix}\right.\)

\(\Rightarrow I=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}\int e^{3x}.3^xdx=\dfrac{1}{3}e^{3x}.3^x-\dfrac{ln3}{3}.I\)

\(\Rightarrow\left(1+\dfrac{ln3}{3}\right)I=\dfrac{1}{3}e^{3x}.3^x\)

\(\Rightarrow I=\dfrac{1}{3+ln3}.e^{3x}.3^x+C\)

Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:17

1.

\(I=\int\left(2x-1\right)e^{\dfrac{1}{x}}dx=\int2x.e^{\dfrac{1}{x}}dx-\int e^{\dfrac{1}{x}}dx\)

Xét \(J=\int2x.e^{\dfrac{1}{x}}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{\dfrac{1}{x}}\\dv=2xdx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\dfrac{e^{\dfrac{1}{x}}}{x^2}dx\\v=x^2\end{matrix}\right.\)

\(\Rightarrow J=x^2.e^{\dfrac{1}{x}}+\int e^{\dfrac{1}{x}}dx\)

\(\Rightarrow I=x^2.e^{\dfrac{1}{x}}+C\)

Technology I
9 tháng 1 lúc 22:41

Để tìm nguyên hàm của hàm số, ta cần xác định giá trị của hàm tại một điểm nào đó.

Trong trường hợp này, ta chọn điểm nhân nguyên tố nhất là 3.

Để tính giá trị của hàm tại điểm 3, ta đặt x=3 vào hàm số:

 

f ( x )

( 2 x − 1 ) e 1 x

= ( 2 ( 3 ) − 1 ) e 1 ( 3 )

= ( 6 − 1 ) e 1 3

= ( 5 ) e 1 3

 

f ( x )

e 3 x

= e 3 ( 3 )

= e 3 3

Ta tiến hành tính toán:

 

f ( 3 )

( 5 ) e 1 3

= 5 e 1 3

 

f ( 3 )

e 3 3

= e 3 3

Như vậy, giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Tóm lại, để tìm nguyên hàm của hàm số, ta đã tìm được rằng giá trị của hàm tại điểm 3 là 5e^3 hoặc e^33, tùy thuộc vào hàm số cụ thể.

Chippy0903203
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:38

Đề bài là: \(f\left(x\right)=\dfrac{x^3+1}{x+2}\) hay \(f\left(x\right)=x^3+\dfrac{1}{x}+2\) hay \(f\left(x\right)=x^3+\dfrac{1}{x+2}\) bạn?

Bạn nên sử dụng tính năng gõ công thức toán hoặc chụp hình trực tiếp đề bài gửi lên (hiện hoc24 đã cho gửi câu hỏi bằng hình ảnh)

Nguyễn Việt Lâm
12 tháng 12 2020 lúc 20:48

\(\int\dfrac{x^3+1}{x+2}dx=\int\left(x^2-2x+4-\dfrac{7}{x+2}\right)dx\)

\(=\dfrac{1}{3}x^3-x^2+4x-7ln\left|x+2\right|+C\)

Hoàng Quỳnh Như
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 21:22

Câu 1: 

a) 

\(y=f\left(x\right)=2x^2\)-5-3035
f(x)501801850

b) Ta có: f(x)=8

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

Vậy: Để f(x)=8 thì \(x\in\left\{2;-2\right\}\)

Ta có: \(f\left(x\right)=6-4\sqrt{2}\)

\(\Leftrightarrow2x^2=6-4\sqrt{2}\)

\(\Leftrightarrow x^2=3-2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{3-2\sqrt{2}}\)

hay \(x=\sqrt{2}-1\)

Vậy: Để \(f\left(x\right)=6-4\sqrt{2}\) thì \(x=\sqrt{2}-1\)

nguyen thi be
Xem chi tiết
Hoàng Tử Hà
8 tháng 4 2021 lúc 14:07

1/ \(y'=\dfrac{\left(\sqrt{x+1}\right)'x-x'\sqrt{x+1}}{x^2}=\dfrac{\dfrac{x}{2\sqrt{x+1}}-\sqrt{x+1}}{x^2}=\dfrac{-x-2}{2x^2\sqrt{x+1}}\)

2/ \(y'=\dfrac{1-x^2-\left(1-x^2\right)'x}{\left(1-x^2\right)^2}=\dfrac{1+x^2}{\left(1-x^2\right)^2}\)

3/ \(y'=\dfrac{-\left(x-\sqrt{x+1}\right)'}{\left(x-\sqrt{x+1}\right)^2}=\dfrac{-1+\dfrac{1}{2\sqrt{x+1}}}{\left(x-\sqrt{x+1}\right)^2}\)

4/ \(y'=f'\left(x\right)=2x-\dfrac{2x}{x^4}=2x-\dfrac{2}{x^3}\)

\(y'=0\Leftrightarrow\dfrac{2x^4-2}{x^3}=0\Leftrightarrow x=\pm1\)

5/ \(y'=\dfrac{\dfrac{1}{2\sqrt{1+x}}}{2\sqrt{1+\sqrt{1+x}}}\Rightarrow f\left(x\right).f'\left(x\right)=\sqrt{1+\sqrt{1+x}}.\dfrac{1}{4\sqrt{1+x}.\sqrt{1+\sqrt{1+x}}}=\dfrac{1}{4\sqrt{1+x}}=\dfrac{1}{2\sqrt{2}}\)

\(\Leftrightarrow2\sqrt{1+x}=\sqrt{2}\Leftrightarrow1+x=\dfrac{1}{2}\Leftrightarrow x=-\dfrac{1}{2}\)

Hãy nhớ câu tính đạo hàm này, bởi nó liên quan đến nguyên hàm sau này sẽ học

Miền Nguyễn
Xem chi tiết
Yeutoanhoc
26 tháng 8 2021 lúc 19:17

Sửa b)`->` x nguyên để f(x) nguyên

a)TXĐ:`{(x>=0),(sqrtx-1 ne 0):}`

`<=>{(x>=0),(sqrtx ne 1):}`

`=>x>=0,x ne 1`

`b)f(x) in ZZ=>sqrtx+1 vdots sqrtx-1`

`=>sqrtx-1+2 vdots sqrtx-1`

`=>2 vdots sqrtx-1`

`=>sqrtx-1 in Ư(2)`

`=>sqrtx-1 in {+-1;2}`

`=>sqrtx in {0;2;3}`

`=>x in {0;4;9}`

Nguyễn Lê Phước Thịnh
27 tháng 8 2021 lúc 0:33

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Để f(x) nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;3\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

ThanhNghiem
Xem chi tiết
HT.Phong (9A5)
18 tháng 11 2023 lúc 14:05

a) Ta có: 

\(f\left(-2\right)=\left|3\cdot-2-1\right|=\left|-6-1\right|=\left|-7\right|=7\) 

\(f\left(2\right)=\left|3\cdot2-1\right|=\left|6-1\right|=5\)

\(f\left(-\dfrac{1}{4}\right)=\left|3\cdot-\dfrac{1}{4}-1\right|=\left|-\dfrac{3}{4}-1\right|=\left|-\dfrac{7}{4}\right|=\dfrac{7}{4}\) 

b) Ta có: 

\(f\left(x\right)=10\)

\(\Rightarrow\left|3x-1\right|=10\)

Với \(x\ge\dfrac{1}{3}\Rightarrow3x-1=10\)

\(\Rightarrow3x=11\Rightarrow x=\dfrac{11}{3}\left(tm\right)\)

Với \(x< \dfrac{1}{3}\Rightarrow3x-1=-10\)

\(\Rightarrow3x=-9\Rightarrow x=-3\left(tm\right)\) 

_______

\(f\left(x\right)=-3\)

\(\Rightarrow\left|3x-1\right|=-3\)

Mà: \(\left|3x-1\right|\ge0\forall x\) và \(-3< 0\)

\(\Rightarrow\left|3x-1\right|=-3\) (vô lý)

\(\Rightarrow\) không có x thỏa mãn