I : phân tích đa thức sau thành nhân tử
a) x^4+64y^8
Phân tích đa thức sau thành nhân tử:
3x2+x-4
\(3x^2+x-4=3x^2-3x+4x-4=3x\left(x-1\right)+4\left(x-1\right)=\left(3x+4\right)\left(x-1\right)\)
Phân tích đa thức sau thành nhân tử : x2(x + 4)2 – (x + 4)2 – (x2 – 1)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\\ =\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\\ =\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\\ =\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)
\(= (x+4)^2(x^2-1)-(x^2-1)=[(x+4)^2-1](x^2-1)\)
\(=(x+4-1)(x+4+1)(x-1)(x+1)\)
\(=(x+3)(x+5)(x-1)(x+1)\)
\(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)
\(=\left(x+4\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left[\left(x+4\right)^2-1\right]\)
\(=\left(x^2-1\right)\left(x+3\right)\left(x+5\right)\)
Phân tích đa thức sau thành nhân tử : (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8\right)^2+2x\left(x^2+4x+8\right)+x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+4x+8+2x\right)+x\left(x^2+4x+8+2x\right)\)
\(=\left(x^2+4x+8\right)\left(x^2+6x+8\right)+x\left(x^2+6x+8\right)\)
\(=\left(x^2+4x+8+x\right)\left(x^2+6x+8\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+5x+8\right)\left(x^2+6x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Phân tích đa thức thành nhân tử : x^4 – x^3 – x + 1
\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)
phân tích đa thức thành nhân tử
{x+4}{x+5}{x+6}{x+7}{x+8}-34
giúp mình với: phân tích đa thức thành nhân tử: (x+1)(x-4)(x+2)(x-8)+4x2
\(A=\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(A=\left[\left(x+1\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x+2\right)\right]+4x^2\)
\(A=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(p=x^2-4,5x-8\)ta có :
\(A=\left(p-2,5x\right)\left(p+2,5x\right)+4x^2\)
\(A=p^2-\left(2,5x\right)^2+4x^2\)
\(A=p^2-6,25x^2+4x^2\)
\(A=p^2-2,25x^2\)
\(A=p^2-\left(1,5x\right)^2\)
\(A=\left(p-1,5x\right)\left(p+1,5x\right)\)
Thay \(p=x^2-4,5x-8\)vào A ta có :
\(A=\left(x^2-4,5x-8-1,5x\right)\left(x^2-4,5x-8+1,5x\right)\)
\(A=\left(x^2-6x-8\right)\left(x^2-3x-8\right)\)
\(\left(x+1\right)\left(x-4\right)\left(x+2\right)\left(x-8\right)+4x^2\)
\(=\left(x+1\right)\left(x-8\right)\left(x-4\right)\left(x+2\right)+4x^2\)
\(=\left(x^2-7x-8\right)\left(x^2-2x-8\right)+4x^2\)
Đặt \(x^2-2x-8=t\)
Ta có : \(\left(t-5x\right)t+4x^2\)
\(=t^2-5xt+4x^2\)
\(=t^2-2.\frac{5}{2}xt+\frac{25}{4}x^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}\right)^2-\frac{9}{4}x^2\)
\(=\left(t-\frac{5}{2}-\frac{3}{2}x\right)\left(t-\frac{5}{2}+\frac{3}{2}x\right)\)
Học tốt ~~
phân tích đa thức thành nhân tử x^5+x^4+1
x^5+x^4+1
=x5+x4+x3+x2+x+1-x3-x2-x
=x3.(x2+x+1)+(x2+x+1)-x.(x2+x+1)
tự xử tiếp
Phân tích đa thức thành nhân tử : xm + 4 – xm + 3 – x + 1
\(x^{m+4}-x^{m+3}-x+1=x^{m+3}\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^{m+3}-1\right)\)
Ta có: \(x^{m+4}-x^{m+3}-x+1\)
\(=x^{m+3}\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^{m+3}-1\right)\)
Phân tích đa thức thành nhân tử : x^4 - 2x^3 + 2x - 1
\(x^4-2x^3+2x-1=x^3\left(x-1\right)-x^2\left(x-1\right)-x\left(x-1\right)+\left(x-1\right)=\left(x-1\right)\left(x^3-x^2-x+1\right)=\left(x-1\right)\left[x^2\left(x-1\right)-\left(x-1\right)\right]=\left(x-1\right)^2\left(x^2-1\right)=\left(x-1\right)^3\left(x+1\right)\)
\(x^4-2x^3+2x-1\)
\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)
\(=\left(x-1\right)^3\cdot\left(x+1\right)\)