\(x^4-x^3-x+1=\left(x^4-x^3\right)-\left(x-1\right)=x^3\left(x-1\right)-\left(x-1\right)=\left(x^3-1\right)\left(x-1\right)=\left(x-1\right)^2.\left(x^2+x+1\right)\)
x4 - x3 - x + 1
= (x4 - x3) - (x - 1)
= x3(x - 1) - (x - 1)
= (x3 - 1)(x - 1)
\(x^4-x^3-x+1\)
\(=x^3\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3-1\right)\)
\(=\left(x-1\right)^2\cdot\left(x^2+x+1\right)\)