Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dairy COws
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
9 tháng 4 2020 lúc 14:14

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

Khách vãng lai đã xóa
Trần Thị Quỳnh Chi
9 tháng 4 2020 lúc 18:34

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

Khách vãng lai đã xóa
ngtt
Xem chi tiết
Toru
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2018 lúc 9:24


vu thi thuy duong
Xem chi tiết
lê duy mạnh
17 tháng 10 2019 lúc 20:13

(x+y)^2+2(x+y)+1+2(y-1)^2+2013>0

Hàn Lãnh Băng
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 8 2023 lúc 18:01

B=x^2-12x+6^2-8

=(x-6)^2-8

Biểu thức này ko thể luôn dương nha bạn

Soái muội
Xem chi tiết
Edogawa Conan
4 tháng 10 2019 lúc 22:56

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

Zai ho trong
20 tháng 4 2020 lúc 16:21

1×2=2

Khách vãng lai đã xóa
Lê Đức Mạnh
Xem chi tiết
Đỗ Thị Thanh Hằng
Xem chi tiết
So Yummy
Xem chi tiết
Vũ Minh Tuấn
29 tháng 12 2019 lúc 22:08

Câu 1: Sửa đề là

\(x^2+2x+4^n-2^{n+1}+2=0\)

\(\Rightarrow x^2+2x+2^{2n}-2^{n+1}+1+1=0\)

\(\Rightarrow\left(x^2+2x+1\right)+\left(2^{2n}-2^{n+1}+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(2^{2n}-2.2^n+1\right)=0\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(2^n-1\right)^2\ge0\end{matrix}\right.\forall x,n.\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2\ge0\) \(\forall x,n.\)

\(\Rightarrow\left(x+1\right)^2+\left(2^n-1\right)^2=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(2^n-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1=0\\2^n-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-1\\2^n=2^0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\n=0\end{matrix}\right.\)

Vậy \(\left(x;n\right)\in\left\{-1;0\right\}.\)

Chúc bạn học tốt!

Khách vãng lai đã xóa