Chứng minh vs mọi số nguyên m thì m3 +5m chia hết cho 6
Cho \(m\in Z\). Chứng minh rằng: m3 + 5m và m3 - 19 luôn chia hết cho 6
\(m^3+5m=m\left(m^2+5\right)=m\left(m^2-1+6\right)=\left(m-1\right)m\left(m+1\right)+6m\)
Do \(\left(m-1\right)m\left(m+1\right)\) là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮2.3=6\)
\(\Rightarrow m^3+5m=\left(m-1\right)m\left(m+1\right)+6m⋮6\)
1.chứng min 2n^2 .(n+1)-2n (n^2 +n-3) chia hết cho 6 vs mọi số nguyên n
2.chứng minh n(3-2n)-(n-1) (1+4n)-1 chia hết cho 6 với mọi số nguyên n
giúp mk vs mk cần gấp TT
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
chứng minh rằng \(n^5m-nm^5\)chia hết cho 30 với mọi số nguyên m,n
1.Chứng minh 2n^2 .(n+1) - 2n(n^2 + n -3 ) chia hết cho 6 với mọi số nguyên n
2.Chứng minh n(3-2n)-(n-1)(1+4n)-1 chia hết cho 6 với mọi số nguyên n
3.Cho biểu thức : (m^2 -2m+4)(m+2)-m^3 + (m+3)(m-3)-m^2-18
Chứng minh giá trị của P khôgn phụ thuộc vào m
AI có thể giúp tớ vs đc k ạ tớ sẽ stick cho ai tl đúng nhé
a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6
b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1
= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1
= 6n - 6n^2 chia hết 6
c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18
= - 19
Bài 1:
\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n\left(n^2+n-n^2-n+3\right)\)
\(=6n\)\(⋮\)\(6\)
Bài 2:
\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)
\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)
\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)
Bài 3:
\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)
\(=m^3+8-m^3+m^2-9-m^2-18\)
\(=-19\)
\(\Rightarrow\)đpcm
a, <=> 2n[ n(n+1)-n2-n+3)
<=> 2n( n2+n-n2-n+3)
<=> 6n chia hết cho 6 với mọi n nguyên
b, <=> 3n-2n2-(n+4n2-1-4n) -1
<=> 3n-2n2-n-4n2+1+4n-n-1
<=> 6n-6n2
<=> 6(n-n2) chiiaia hhehethet cchchocho 6
c ,<=> m3-23-m3+m2-32-m2-18
<=>-35 => ko phụ thuộc vào biến
cmr: m^3+5m chia hết cho 6 với mọi số nguyên m
Chứng minh rằng với mọi số nguyên m thì 4m^3+9m^2-19m-30 chia hết cho 6
Nhanh lên mai mình nộp rùi
chứng minh rằng với mọi số nguyên n thì B= n^3+11n chia hết cho 6
N^3+11n=n^3-n+12n
=n(n^2-1)+12n
=(n-1)n (n+1) +12n
Vì n là số tự nhiên nên => (n-1)n (n+1) là tích 3 số nguyên liên tiếp => chia hết cho 6
12 chia hết cho 6 nên 12n chia hết cho 6
=> (n-1)n (n+1)+12n chia hết cho 6
=> n^+11n chia hết cho 6
Chứng minh rằng với mọi số nguyên n thì A=n(n+1)(2n+1) chia hết cho 6
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
Chứng minh rằng với mọi số nguyên a thì a2 (a + 1) + 2a (a + 1) chia hết cho 6
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6