Cho nửa đường tròn tâm o đường kính ab , bán kính oe . Oe vuông góc với ce tại e, c thuộc ax, oe vuông góc với ed tại e, d thuộc by , dc cắt ae tại i , od cắt be tại k
A) cd=ac+bd
B) góc cod bằng ?
C) tứ giác eiok là hình gì ? Vs?
bài1: Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Vẽ bán kính OE bất kỳ. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D. a)CMR : CD = AC + BD
b) Tính số đo của góc COD
c)Gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIOK là hình gì? Vì sao? d)Xác định vị trí của bán kính OE để tứ giác EIOK là hình vuông.
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: DE+CE=DC
nên CD=AC+BD
Cho nửa đường tròn tâm O , đường kính AB .Kẻ các tiếp tuyến Ax,By cùng phía với nửa đường tròn đối với AB .Vẽ bán kính OE bất kì . tiếp tuyến của nửa đường tròn tại E cắt Ax,By theo thứ tự ở C và D.
a,CMR : CD=AC+BD
b, Tính góc COD
c, gọi I là giao điểm của OC vs AE , gọi K là giao điểm của OD và BE .Tứ giác EIOK là hình gì ? Vì sao ?
d, Xác định vị trí của bán kính OE để tứ giác EIOK là hình vuông
Nhanh giúp mk nhé mn
Tự vẽ hình
a,a)
► Tính chất của hai tiếp tuyến cùng xuất phát từ một điểm, ta có:
AC = CM ; BD = MD
=> AC + BD = CM + MD = CD
b,Câu trên có thể cm trực tiếp bằng cách nối OC => hai tgiác ACO và MCO bằng nhau (vì tgiác vuông, có chung cạnh huyền, OA=OM=R)
=> OC là tia phân giác của góc AO^M
tương tự: OD cúng là phân giác cua góc BO^M
AO^C + CO^M + DO^M + DO^B = 180o
=> 2.CO^M + 2DO^M = 180o
=> CO^M + DO^M = CO^D = 90o
BÀI 5: Cho nửa đường tròn tâm O đường kính AB. Kẻ các tiếp tuyến Ax,By cùng phía với nửa đườg tròn đối với AB. Vẽ bán kính OE bất kì .Tiếp tuyến của nửa đường tròn tại E cắt Ax,By theo thứu tự ở C,D
a)Chứng minh rằng CD=AC+BD
b)Tính số đo góc COD
c)Gọi I là giao điểm của Oc và EA ,gọi K là giao điểm của OD và BE .Tứ giác EIOK là hình gì?vì sao?
d)Chứng minh: OK.OD=OI.OC
a: Xét (O) có
CE là tiếp tuyến
CA là tiếp tuyến
Do đó: CE=CA
Xét (O) có
DE là tiếp tuyến
DB là tiếp tuyến
Do đó: DE=DB
Ta có: CE+DE=CD
nên CD=CA+DB
Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.
a)Chứng minh rằng: CD=AC+BD
b)Tính số đo góc COD
c)Gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIOK là hình gì? Vì sao?
a: Xét (O) có
CE là tiếp tuyến có E là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CE=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DE là tiếp tuyến có E là tiếp điểm
Do đó: DB=DE
Ta có: CD=CE+ED
nên CD=CA+DB
Bài 10. Cho đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB.Vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C, D.
a) Chứng minh rằng CD = AC+BD.
b) Tính số đo góc COD.
c) EIOK là hình gì? Vì sao?
d) CMR: OK.OD = OI. OC
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) co
DE,DB là tiép tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
CD=CE+ED
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
Bài 10. Cho đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB.Vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C, D.
a) Chứng minh rằng CD = AC+BD.
b) Tính số đo góc COD.
c) EIOK là hình gì? Vì sao?
d) CMR: OK.OD = OI. OC
a: Xét (O) có
CA,CE là tiếp tuyến
nên CA=CE và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là tiếp tuyến
nên DE=DB và OD là phân giác của góc EOB(2)
CE+ED=CD
=>CD=CA+DB
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: CO là trung trực của AE
DE=DB
OE=OB
Do đó: DO là trung trực của EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
Cho nửa (O), đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB, vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự tại C, D. Gọi I là giao điểm của OC & AE, K là giao điểm của OD & BE. Xác định vị trí của bán kính OE để tứ giác EIOK là hình vuông
Cho nửa đường tròn tâm O, đường kính AB, kẻ các tiếp tuyến Ax, By cùngphía với nửa đường tròn, đối với AB vẽ bán kính OE bất kì. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự C,D a, Chứng minh rằng b, tính số đo góc COD c, gọi I là giao điểm của OC và AE, gọi K là giao điểm của OD và BE. Tứ giác EIO là hình gì? vì sao d, chứng minh: OK×OD=OI×OC
b: Xét (O) có
CE,CA là các tiếp tuyến
nen CE=CA và OC là phân giác của góc AOE(1)
Xét (O) có
DE,DB là các tiếp tuyến
nên DE=DB và OD là phân giác của góc BOE(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: CA=CE
OA=OE
Do đó: OC là trung trực của AE
=>OC vuông góc với AE
DE=DB
OE=OB
Do đo; OD là trung trực của EB
=>OD vuông góc với EB
Xét tứ giác EIOK có
góc EIO=góc EKO=góc IOK=90 độ
nên EIOK là hình chữ nhật
d: OK*OD=OB^2
OI*OC=OA^2
mà OB=OA
nên OK*OD=OI*OC
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D, MA cắt OC tại E, MB cắt OD tại F Chứng minh rằng:
a) ∠COD = 90o
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
d) EMFO là hình gì
e) Cm OE*OC=OF*OD
f) Chứng minh AB là tiếp tuyến của đường tròn
Bài 1:
a) Ax ⊥ OA tại A, By ⊥ OB tại B nên Ax, By là các tiếp tuyến của đường tròn.
Theo tính chất của hai tiếp tuyến cắt nhau ta có:
CM = CA; DM = DB;
∠O1 = ∠O2; ∠O3 = ∠O4
⇒ ∠O2 + ∠O3 = ∠O1 + ∠O4 = 1800/2 = 900 (tính chất hai tia phân giác của hai góc kề bù).
⇒ ∠OCD = 900
b) CM và CA là hai tiếp tuyến của đường tròn, cắt nhau tại C nên CM = CA
Tương tự:
DM = DB
⇒ CM + DM = CA + DB
⇒ CD = AC + BD.
c) Ta có OM ⊥ CD
Trong tam giá vuông COD, OM Là đường cao thuộc cạnh huyển
OM2 = CM.DM
Mà OM = OA = OA = AB/2 và CM = AC; DM = BD
Suy ra AC.BD = AB2/2 = không đổi