Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Linh
Xem chi tiết
Vũ Việt Hà
7 tháng 10 2017 lúc 19:04

a, Vì n \(\in\)N => n là số chính phương

mà 9 = 32 là số chính phương

=> n2 + 9 là số chính phương.

Vậy A = n2 + 9 là số chính phương.

CHÚC BẠN HỌC TỐT!!!!

Thành Nam Vũ
22 tháng 1 2023 lúc 9:39

Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)

<=> 9=m2-n2

<=> 9=(m-n)(m+n)

Vì n thuộc N => m-n thuộc Z, m+n thuộc N

=> m-n,m+n thuộc Ư(9)

mà m+n>m-n

nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)

 Vậy A là SCP <=>n=4

Blue Frost
Xem chi tiết
Đinh quang hiệp
24 tháng 6 2018 lúc 13:53

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

Lê Quang Tuấn Kiệt
24 tháng 6 2018 lúc 12:35

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bùi Viết Anh Quân
Xem chi tiết
Triệu Minh Anh
21 tháng 5 2017 lúc 10:40

Vì n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)3         (1)

n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)2              (2)

Từ (1),(2) mà ƯCLN(3,2) = 1\(\Rightarrow\)n (n+1)(n+2) \(⋮\)6\(\Rightarrow\)​7n (n+1)(n+2)\(⋮\)6; 7n (n+1)(n+2)\(⋮\)7 mà ƯCLN (6,7)=1

\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)42

nguyen tuan kha
Xem chi tiết
Nguyễn Thị Việt Trà
Xem chi tiết
Thuỳ trang Lương
Xem chi tiết
Makabe Masamune
12 tháng 8 2020 lúc 22:05

Câu 2

Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2

Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1

                                          =4(K^2+K+H^2+H)+2

Vì 4(K^2+K+H^2+H) chia hết cho 4

=>4(K^2+K+H^2+H)+2 ko chia hết cho 4

Mk biết làm vậy thôi nha

Khách vãng lai đã xóa
yoai0611
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 1:53

Bài 1:

$5a+8b\vdots 3$

$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$

$\Leftrightarrow 5a+8b-6b-6a\vdots 3$

$\Leftrightarrow 2b-a\vdots 3$

 Ta có đpcm. 

 

Akai Haruma
30 tháng 1 2021 lúc 1:55

Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.

Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$

Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ

$\Rightarrow n(n+1)\vdots 2$

$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$

Mặt khác:

Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$

Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$ 

$\Rightarrow A\vdots 3$

Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$

$\Rightarrow A\vdots 3$

Tóm lại $A\vdots 3(2)$

Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$

nguyen phuong thao
Xem chi tiết
No ri do
15 tháng 12 2016 lúc 14:12

Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)

Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Sau đó tìm n

 

Xem chi tiết
Phạm Tuấn Đạt
12 tháng 8 2017 lúc 10:41

\(a,\frac{7n+3}{n}\)

\(\Rightarrow3⋮n\)Vì \(7n⋮n\)

\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)

\(b,\frac{12n-1}{4n+2}\)

\(=\frac{12n+6-7}{4n+2}\)

\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)

Để \(12n-1⋮4n+2\)

\(\Rightarrow7⋮4n+2\)

\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)

Linh Ngô
Xem chi tiết