Tìm n thuộc N. CMR : ( 71+ 1 )(7n+ 2 ) chia hết cho 3
Bài 1: Tìm n thuộc N để:
A= n^2+9 là số chính phương
B= n^2+2014 là số chính phương
C= n(n+3) là số chính phương
Bài 2: CMR: a^2-1 chia hết cho 24 với a là số nguyên tố >3
Bài 3: CMR: n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
a, Vì n \(\in\)N => n2 là số chính phương
mà 9 = 32 là số chính phương
=> n2 + 9 là số chính phương.
Vậy A = n2 + 9 là số chính phương.
CHÚC BẠN HỌC TỐT!!!!
Vì A=n2+9 là SCP
Đặt A=n2+9=m2 (m thuộc N)
<=> 9=m2-n2
<=> 9=(m-n)(m+n)
Vì n thuộc N => m-n thuộc Z, m+n thuộc N
=> m-n,m+n thuộc Ư(9)
mà m+n>m-n
nên \(\left\{{}\begin{matrix}m+n=9\\m-n=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}m=5\\n=4\end{matrix}\right.\)(thỏa mãn)
Vậy A là SCP <=>n=4
Bài 1:Cho a1,a2,....,a2018 thuộc Z
CMR:a1+a2+...+a2018 chia hết cho 30 khi và chỉ khi a1^5 + a2^5 +...+ a2018^5 chia hết cho 30\
Bài 2: Tìm x,y thuộc N* sao cho x+y+1 chia hết cho xy
Bài 3: tìm x,y thuộc N* sao cho y+1 chia hết cho x, x+1 chia hết cho y
Bài 4:Tìm x,y thuộc N* sao cho y+2 chia hết cho x, x+2 chia hết cho y
Bài 5: Tìm x,y thuộc N* sao cho 2x+1 chia hết cho y, 2y+1 chia hết cho x
Bài 6: CMR: Với mọi n thuộc Z ta có n^5 + 5n chia hết cho 6
Bài 7:CMR: Với mọi n thuộc Z ta có n(2n+7)(7n+1) chia hết cho 6
Giúp mình nhé, cảm ơn các bạn nhiều!!!
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Cho n thuộc Z
Cmr 7n (n+1)(n+2)chia hết cho 42
Vì n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)3 (1)
n; n+1; n+2 là 3 số tự nhiên liên tiếp nên n (n+1)(n+2) \(⋮\)2 (2)
Từ (1),(2) mà ƯCLN(3,2) = 1\(\Rightarrow\)n (n+1)(n+2) \(⋮\)6\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)6; 7n (n+1)(n+2)\(⋮\)7 mà ƯCLN (6,7)=1
\(\Rightarrow\)7n (n+1)(n+2)\(⋮\)42
Tìm n thuộc N, biết:
a) n^2+3 chia hết cho n-1
b) 2n+1 chia hết cho 7n-2
Tìm n thuộc Z để:
1) (n+1013) chia hết cho n
2) (11-7n) chia hết cho n
3) (n+5) chia hết cho (n+4)
cmr vơi mọi n thuộc z thì
1,B=n^3-7n+19 không chia hết cho 6
2, Tổng bình phương của 2 số lẻ không chia hết cho 4
3,hiệu bình phương của hai số lẻ chia hết cho 8
4, n(n+2)(25n^2-1) chia hết cho 24
Câu 2
Gọi tổng bình phương hai số lẻ là (2K+1)^2+(2H+1)^2
Ta có: (2K+1)^2+(2H+1)^2=4K^2+4K+1+4H^2+4H+1
=4(K^2+K+H^2+H)+2
Vì 4(K^2+K+H^2+H) chia hết cho 4
=>4(K^2+K+H^2+H)+2 ko chia hết cho 4
Mk biết làm vậy thôi nha
Bài 1:
$5a+8b\vdots 3$
$\Leftrightarrow 5a+8b-3(2b+2a)\vdots 3$
$\Leftrightarrow 5a+8b-6b-6a\vdots 3$
$\Leftrightarrow 2b-a\vdots 3$
Ta có đpcm.
Bài 2. Bổ sung thêm điều kiện $n$ là số tự nhiên.
Ta có: $A=n(2n+7)(7n+7)=7n(2n+7)(n+1)$
Vì $n,n+1$ là 2 số tự nhiên liên tiếp nên sẽ tồn tại 1 số chẵn và 1 số lẻ
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow A=7n(n+1)(2n+7)\vdots 2(1)$
Mặt khác:
Nếu $n\vdots 3$ thì $A=7n(n+1)(2n+7)\vdots 3$
Nếu $n$ chia $3$ dư $1$ thì $2n+7$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Nếu $n$ chia $3$ dư $2$ thì $n+1$ chia hết cho $3$
$\Rightarrow A\vdots 3$
Tóm lại $A\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$
(2n^2+ 7n-2)chia hết cho (2n -1)
tìm n thuộc z để ( 2n ^2 +7n -2) chia hết cho (2n -1)
Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)
Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Sau đó tìm n
TÌM n thuộc N sao cho
a)7n+3 chia hết n
b)12n-1 chia hết 4n+2
c)10n+5 chia hết 5n-1
\(a,\frac{7n+3}{n}\)
\(\Rightarrow3⋮n\)Vì \(7n⋮n\)
\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)
\(b,\frac{12n-1}{4n+2}\)
\(=\frac{12n+6-7}{4n+2}\)
\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)
Để \(12n-1⋮4n+2\)
\(\Rightarrow7⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)