Đồ thị hàm số y = ax là đường thẳng đi qua M (-2;1 )
a) Hãy xác định hệ số a
b) Tìm tọa độ của các điểm B, Q đều thuộc đồ thị của hàm số trên, biết hoành độ của B là 4, tung độ của Q là 3
xác định đồ thị hàm số y=ax + b biết:
a, đồ thị hàm số vuông góc với đường thẳng y=3x+1 và đi qua điểm M(1;2)
b, đồ thị hàm số đi qua 2 điểm P( 2;1) và Q(-1;4)
b: Vì đồ thị hàm số đi qua hai điểm P(2;1) và Q(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=4+a=3\end{matrix}\right.\)
a: Vì đồ thị hàm số y=ax+b vuông góc với y=3x+1 nên 3a=-1
hay \(a=-\dfrac{1}{3}\)
Vậy: \(y=-\dfrac{1}{3}x+b\)
Thay x=1 và y=2 vào hàm số, ta được:
\(b-\dfrac{1}{3}=2\)
hay \(b=\dfrac{7}{3}\)
Tìm hệ số a và b biết:
a) Đồ thị hàm số y=ax + b song song với đường thẳng y=5-3x và đi qua C(-1;1)
b) Đồ thị hàm số y=ax + b đi qua M(0;3) và N(-3;-1)
a: Theo đề, ta có: a=-3
Vậy: y=-3x+b
Thay x=-1 và y=3 vào (d), ta được:
b+3=3
hay b=0
tìm m thỏa mãn yêu cầu bài toán
a) đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) có đường tiệm cận đứng đi qua điểm M (3;-1)
b) đường thẳng x = -2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
c) biết đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có tiệm cận đứng là x = 2 và tiệm cận ngang y = 3. Tính 2a+3b
d) đồ thị hàm số \(y=\dfrac{x+2}{x^2+2x+m^2-3m}\) có 2 đường tiệm cận đứng
a: \(\lim\limits_{x\rightarrow-\dfrac{3m}{2}}\dfrac{x+3}{2x+3m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\dfrac{3m}{2}}2x+3m=0\\\lim\limits_{x\rightarrow-\dfrac{3m}{2}}x+3=\dfrac{-3m}{2}+3\end{matrix}\right.\)
=>x=-3m/2 là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\)
Để tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x+3}{2x+3m}\) đi qua M(3;-1) thì \(-\dfrac{3m}{2}=3\)
=>-1,5m=3
=>m=-2
b: \(\lim\limits_{x\rightarrow-m}\dfrac{2x-3}{x+m}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-m}2x-3=-2m-3\\\lim\limits_{x\rightarrow-m}x+m=0\end{matrix}\right.\)
=>x=-m là tiệm cận đứng duy nhất của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\)
Để x=-2 là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{2x-3}{x+m}\) thì -m=-2
=>m=2
c: \(\lim\limits_{x\rightarrow\dfrac{2}{b}}\dfrac{ax+1}{bx-2}=\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow\dfrac{2}{b}}ax+1=a\cdot\dfrac{2}{b}+1\\\lim\limits_{x\rightarrow\dfrac{2}{b}}bx-2=b\cdot\dfrac{2}{b}-2=0\end{matrix}\right.\)
=>Đường thẳng \(x=\dfrac{2}{b}\) là tiệm cận đứng của đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\)
=>2/b=2
=>b=1
=>\(y=\dfrac{ax+1}{x-2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow+\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{ax+1}{x-2}=\lim\limits_{x\rightarrow-\infty}\dfrac{a+\dfrac{1}{x}}{1-\dfrac{2}{x}}=a\)
=>Đường thẳng y=a là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{ax+1}{x-2}\)
=>a=3
Xác định hàm số bậc nhất y=ax+b biết đồ thị hàm số đi qua A(-1,5) và song song với đồ thị hàm số y=3x+1 biết phương trình của đồ thị hàm số đi qua M(-1,4) và song song với đường thẳng y=2x-1.
Mọi người giúp em với ạ,em cảm ơn !
Bài 1: Cho đường thẳng d, y=(m-1)x+m
a)Tìm m để hàm số nghịch biến trên R
b) tìm m để đồ thị hàm số đi qua gốc tọa độ
c) Với m=2,vẽ đồ thị hàm số
d) Chứng tỏ rằng đường thẳng d luôn luôn đi qua 1 điểm cố định với mọi m,Tìm điểm đó
Bài 2: Cho 3 điểm A(2;4),B(-3;-1),C(2;1).Hãy chứng minh 3 điểm thẳng hàng
Bài 3: Cho hàm số y=ax-4
a) Tìm a biết đồ thị hàm số đi qua điểm M(2;5)
b)Vẽ đồ thị hàm số vừa tìm được
Bài 4 : Tìm hàm số y=ax+b,biết đồ thị hàm số của nó đi qua 2 điểm A(2;5) và B(-2;-3)
Bài 2:
a)Xác định hàm số bậc nhất y=ax +b biết đồ thị hàm số đi qua điểm M(2;3) và song song với đường thẳng y=2x+3
b) Xác định giao điểm của đồ thị hàm số vừa tìm đc ở câu a với đồ thị hàm số y=-x+5 bằng tính toán
Cho hai đường thẳng y = -3 x + 2 và đường thẳng y = ax - 2 Tìm a để hai đường thẳng song song Tìm a để hai đường thẳng cắt nhau Tìm a biết đồ thị của hàm số y = ax - 2 đi qua điểm M (1: 0)
a: Để hai đường thẳng y=-3x+2 và y=ax-2 song song với nhau thì
\(\left\{{}\begin{matrix}a=-3\\2\ne-2\left(đúng\right)\end{matrix}\right.\)
=>a=-3
b: Để hai đường thẳng y=-3x+2 và y=ax-2 cắt nhau thì \(a\ne-3\)
c: Thay x=1 và y=0 vào y=ax-2, ta được:
a*1-2=0
=>a-2=0
=>a=2
Bài 1. Xác định hàm số y = ax + b biết
a) Đồ thị hàm số cắt trục hoành tại điểm A có hoành độ -4 và cắt trục tung tại điểm B có tung độ 3.
b) Đồ thị của nó song song với đường thẳng y = 3x + 1 và đi qua điểm M(4; -5).
c) Đồ thị của nó là đường thẳng đi qua hai điểm M(3; 5) và N(-1; -7).
d) Đồ thị của nó là đường thẳng cắt đường thẳng y = 2x - 3 tại điểm C có hoành độ là 2 và đi qua điểm
A(3; -4).
e) Đồ thị của nó là đường thẳng đi qua điểm D(-2; 3) và tạo với trục Ox một góc 45◦.
Bài 1:
a: Theo đề, ta có:
\(\left\{{}\begin{matrix}-4a+b=0\\b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{4}\\b=3\end{matrix}\right.\)
Bài 3: Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) Đồ thị của hàm số song song với đường thẳng y = 3x + 1 và đi qua A ( 2; 5)
b) Đồ thị hàm số đi qua A ( -1; 2) và B ( 2; -3).
a: Vì (d) song song với y=3x+1 nên a=1
Vậy: (d): y=x+b
Thay x=2 và y=5 vào (d), ta được:
b+2=5
hay b=3
b: Theo đề,ta có hệ phương trình:
\(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=5\\a-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{5}{3}\\b=a+2=\dfrac{-5}{3}+2=\dfrac{1}{3}\end{matrix}\right.\)
Bài 2: Hãy xác định hàm số y =ax + b biết:
a) Đồ thị hàm số song song với đường thẳng y = 2x – 3 và đi qua A ( 1; 1)
b) Đồ thị hàm số song song với đường thẳng y = 2x và cắt trục hoành tại điểm có hoành độ bằng -3
c) Đồ thị hàm số song song với đường thẳng y = -3x và cắt trục tung tại điểm có tung độ bằng 2.
d) Đồ thị hàm số đi qua điểm P ( 2;1 ) và Q ( -1; 4).
a: Vì (d) song song với y=2x-3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=1 vào (d), ta được:
b+2=1
hay b=-1
b: Vì (d) song song với y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=-3 và y=0 vào (d), ta được:
b-6=0
hay b=6