Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KaiZツ
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
8 tháng 10 2020 lúc 18:04

A = | x - 1 | + | y + 3/4 | - 2020

Ta có : | x - 1 | ≥ 0 ∀ x ; | y + 3/4 | ≥ 0 ∀ y

=> | x - 1 | + | y + 3/4 | ≥ 0 ∀ x, y

=> | x - 1 | + | y + 3/4 | - 2020 ≥ -2020 ∀ x, y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+\frac{3}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-\frac{3}{4}\end{cases}}\)

=> MinA = -2020 <=> x = 1 ; y = -3/4

Khách vãng lai đã xóa
Vô Danh
Xem chi tiết
Hà Đức Duy
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 21:09

Bài 5: 

a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:

\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)

b: Để E<1 thì E-1<0

\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Leftrightarrow\sqrt{x}-3< 0\)

hay x<9

Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)

c: Để E nguyên thì \(4⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)

hay \(x\in\left\{16;25;49\right\}\)

Nhan Thanh
7 tháng 9 2021 lúc 21:17

Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)

Thay \(x=\sqrt{3}-1\) vào \(B\), ta được

\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)

b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)

c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)

Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)

Vậy \(B_{min}=-2\) khi \(x=0\)

Tạ Ngọc Diễm
Xem chi tiết
Yen Nhi
20 tháng 11 2021 lúc 22:20

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

Khách vãng lai đã xóa
lê đức anh
20 tháng 11 2021 lúc 22:33

Bạn Yen Nhi: đề ghi là |x+1| nhé

Khách vãng lai đã xóa
Yen Nhi
21 tháng 11 2021 lúc 11:00

Mình làm lại bài nhé. (Bài trước nhầm đề)

Answer:

\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)

Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được

\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)

Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)

Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\) 

Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)

Khách vãng lai đã xóa
Vũ Thị Phương Anh
Xem chi tiết
Cô Hoàng Huyền
29 tháng 4 2016 lúc 9:08

Với \(x<4,\) ta có: \(A=-x+4-x+2020=2024-2x\). Do \(x<4\) nên \(A>2024-2.4=2016\).

Với \(4\le x\le2020\), ta có: \(A=x-4-x+2020=2016\).

Với \(x>2020,\) ta có \(A=x-4+x-2020=2x-2024\). Do \(x>2020\) nên \(A>2.2020-2024=2016\)

Vậy \(minA=2016\) khi \(x\in\left[4;2020\right]\)

Chúc em luôn học tập tốt :)

Vũ Thị Phương Anh
Xem chi tiết
Đợi anh khô nước mắt
29 tháng 4 2016 lúc 8:12

2016 nhé! Ủng hộ nha

Phạm Thị Hoài Thu
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 9:57

Ta có :

A = x4 - 2x2 + x2 + 2x + 1 + 2019

A = ( x2 - 1 )2 + ( x + 1 )2 + 2019 \(\ge\)2019

Vậy GTNN của A là 2019 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x^2-1=0\end{cases}\Leftrightarrow x=-1}\)

Khách vãng lai đã xóa
kakaruto ff
Xem chi tiết
HT.Phong (9A5)
30 tháng 8 2023 lúc 10:56

Ta có: 

\(A=\sqrt{4\sqrt{x}-x}\) (ĐK: \(16\ge x\ge0\)

Mà: \(\sqrt{4\sqrt{x}-x}\ge0\forall x\) 

Dấu "=" xảy ra:

\(4\sqrt{x}-x=0\)

\(\Leftrightarrow4\sqrt{x}-\left(\sqrt{x}\right)^2=0\)

\(\Leftrightarrow\sqrt{x}\left(4-\sqrt{x}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\4-\sqrt{x}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy: \(A_{min}=0\) khi \(\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Nguyễn Khánh Phương
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 8 2021 lúc 15:06

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)

Nguyễn Hoàng Tú
Xem chi tiết