Tìm giá trị nhỏ nhất của biểu thức
P= \(\sqrt{3x^2-6x+9}-x^4-9x^3-x+2019\)
Tìm giá trị lớn nhất, nhỏ nhất (nếu có) của các biểu thức sau: x^2-4x+10; (1-x)(3x-4); 3x^2-9x+5; -2x^2+5x+2; -3x^2-6x+5; x^4-2x^2+3.
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
Tìm giá trị nhỏ nhất ( lớn nhất) của các biểu thức:
a) A=x^2-6x+2019
b) B= 2x^2 +9x -15
c) C= 5x-3x^2
d) D= x^2 + 4x +y^2 -6y +2019
e) E= x^2 -4xy +5y^2 +10x -22y+2019
Với giá trị nào của x biểu thức sau đạt giá trị nhỏ nhất :\(A=1-\sqrt{5-\sqrt{1-6x+9x^2}}+\left(3x-1\right)^2\)
\(A=1-|1-3x|+|3x-1|^2\)
\(=\left(|3x-1|-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow minA=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)hoặc \(x=\frac{1}{6}\)
Tìm giá trị nhỏ nhất của
A = \(\sqrt{3x^2-6x+9}+x^4-8x^2-x+2019\)
Mọi người giúp em với mai em thi rồi ạ
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)
tìm giá trị lớn nhất ,nhỏ nhất của các biểu thức sau:
a)3x^2+6x+4
b)-3x-x^2+4
c)9x^2-6x+8
d)5x-16x^2+4
e)-2x-x^2+4
a) Đặt A = \(3x^2+6x+4\)
\(A=3\left(x^2+2x+1\right)+1\)
\(A=3\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow3\left(x+1\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi : \(x+1=0\Leftrightarrow x=-1\)
Vậy Min A =1 khi x = -1
b) Đặt \(B=-3x-x^2+4\)
\(-B=x^2+3x-4\)
\(-B=\left(x^2+3x+\frac{9}{4}\right)-\frac{25}{4}\)
\(-B=\left(x+\frac{3}{2}\right)^2-\frac{25}{4}\)
Mà \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge\frac{-25}{4}\)
\(\Leftrightarrow B\le\frac{25}{4}\)
Dấu "=" xảy ra khi : \(x=-\frac{3}{2}\)
Vậy...
Bài 8. Tìm giá trị nhỏ nhất của biểu thức: A = \(\sqrt{1-6x+9x^2}\)+ \(\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)
\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)
\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)
\(A=\left|1-3x\right|+\left|3x-2\right|\)
\(A=\left|1-3x+3x-2\right|\)
\(A=\left|-1\right|=1\)
Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)
\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)
Bài 4 chứng minh các biểu thức ko thuộc giá trị của biến
c)( x-3) (x^2+3x+9)-x^3
D) ( 3x+2 )(9x^2 -6x+4) -9x (3x^2+1)+9x
Lời giải:
c.
$(x-3)(x^2+3x+9)-x^3=x^3-3^3-x^3=-27$ không phụ thuộc vào giá trị của biến
Ta có đpcm
d.
$(3x+2)(9x^2-6x+4)-9x(3x^2+1)+9x$
$=(3x)^3+2^3-27x^3-9x+9x$
$=27x^3+8-27x^3=8$ không phụ thuộc vào giá trị của biến
Ta có đpcm
c) Ta có: \(\left(x-3\right)\left(x^2+3x+9\right)-x^3\)
\(=x^3-27-x^3\)
=-27
d) Ta có: \(\left(3x+2\right)\left(9x^2-6x+4\right)-9x\left(3x^2+1\right)+9x\)
\(=27x^3+8-27x^3-9x+9x\)
=8
Cho biểu thức A=(3-x : x+3 × x^2 + 6x +9 : x^2 -9 + x: x+3 ) : 3+6x-3x^2 : x+3
a) Rút gọn biểu thức A . b) tìm x để A =1:15
c) tìm x để A đạt giá trị nhỏ nhất và giá trị nhỏ nhất là bao nhiêu ?
Tìm giá trị lớn nhất hoặc Nhỏ nhất của các biểu thức sau C =5-6x-x^2
D=3x(x+4)-9