cmr ko tồn tại 5 số nguyên dương sao cho tổng 3 số bất kì là só nguyên tố
Chứng minh rằng không tồn tại 5 số nguyên dương phân biệt sao cho tổng ba số bất kì trong chúng là một số nguyên tố.
(Modulo 3, nha bạn.)
Giả sử tồn tại 5 số thoả đề.
Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:
1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó, tổng 3 số này chia hết cho 3 (vô lí).
2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.
Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).
Vậy điều giả sử là sai.
Cho số nguyên n>5 thỏa mãn, tồn tại các số nguyên dương x1,x2,x3,...,xn có tổng bằng 130 sao cho tổng của 5 số bất kì nhỏ hơn 26. hỏi n nhỏ nhất là bao nhiêu.
Cho số nguyên n>5 thỏa mãn, tồn tại các số nguyên dương x1,x2,x3,...,xn có tổng bằng 130 sao cho tổng của 5 số bất kì nhỏ hơn 26. hỏi n nhỏ nhất là bao nhiêu.
cho 17 số nguyên biết tổng của 5 số bất kì là 1 số dương hỏi tổng 17 số nguyên đó có tổng là só nguyên âm hay nguyên dương?
tồn tại hay không 10số nguyên dương sao cho tổng 9 số bất kì là số chính phương
CMR ko tồn tại số nguyên tố p sao cho 2^p+3^p có dạng k^n, với k,n là các số nguyên dương lớn hơn 1
Cho 31 số nguyên bất kì biết rằng tổng của 5 số bất kì là một số nguyên dương. CMR tổng 31 số đó là số nguyên dương.
Trong 31 số nguyên này phải có ít nhất 1 số dương. Vì nếu cả 31 số đều là âm thì tổng của 5 số bất kì là âm
Bỏ 1 số dương này ra ngoài, còn 30 số
Chia 30 số này thành 6 nhóm, mỗi nhóm 5 số
Theo như đề bài, tổng 5 số bất kì là số dương
=> Cả 6 nhóm đều dương
=> Tổng 30 số là dương
=> Tổng 31 số là dương ( cộng với 1 số dương vừa để ở ngoài)
Có tồn tại hay không 30 số nguyên viết liền nhau thành 1 hàng ngang mà tổng 5 số nguyên liên tiếp bất kì là một số nguyên âm và tổng 7 số nguyên liên tiếp bất kì là một số nguyên dương
mọi người giải chi tiết cho em một chút nhé
Chứng minh: Trong 5 số nguyên dương, không tồn tại tổng ba số bất kỳ có giá trị là một số nguyên tố.
Do các số nguyên dương là phân biệt nên tổng 3 số bất kì bao giờ cũng lớn hơn 3
Xét số dư trong phép chia các số này cho 3. Nếu các số dư là 0;1;2 đều xuất hiện thì ta lấy 3 số tương ứng, ta sẽ được tổng 3 số chia hết cho 3
=>LOại
Nếu có 1 số dư nào đó không xuất hiện thì có 5 số và chỉ có nhiều nhất 2 số dư
=>Suy ra tồn tại 3 số có cùng số dư
=>Ba số này có tổng chia hết cho 3
=>ĐPCM