Cho tam giác ABC cân tại A có góc A = 70 độ . Các đường cao BD;CE .M là trung điểm của BC. I;K là chân các đường vuông góc kẻ từ M đến AB;AC .H là trung điểm của DE.
a. CM: DEBC là hình thang cân .
b.cm:MIHK là hình thoi
c. Tính các góc của MIHK
Cho tam giác abc cân tại a, hai đường cao BD và CE cắt nhau tại I (d thuộc ac; e thuộc ab).
a) cm BD = CE.
b) CM : tam giác AED là tam giác cân và ed // bc.
c) Biết góc BAC = 70 độ. tính các góc của tam giác ibc.
d) Qua b kẻ tia Bx//CE; qua C kẻ Cy //bd. Bx và Cy cắt nhau tại M. cm IM đi qua trung điểm của BC.
cho tam giác abc cân tại a, 2 đường cao bd và ce cắt nhau tại i (d thuộc ac, e thuộc ab).
a) cm bd = ce.
b) cm tam giác aed là tam giác cân và ed // bc.
c) biết góc bac bằng 70 độ. tính các góc của tam giác ibc.
d) qua b kẻ tia Bx // CE, qua c kẻ tia Cy // BD, Bx và Cy cắt nhau tại m. chứng minh rằng im đi qua trung điểm của bc.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
b) Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(1)
Ta có: ΔADE cân tại A(cmt)
nên \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔADE cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AED}=\widehat{ABC}\)
mà \(\widehat{AED}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên DE//BC(Dấu hiệu nhận biết hai đường thẳng song song)
Cho tam giác ABC cân tại A có góc A = 70 độ. Kẻ đường cao AM ( M thuộc BC ). Tính độ dài các góc của tam giác ACM
Vì tam giác ABC là tam giác cân nên AM vừa là đường cao vừa là phân giác của góc A
\(\Rightarrow\widehat{MAC}=\frac{70^0}{2}=35^0\)
\(\widehat{ACM}=90^0-35^0=55^0\)
Tam giác ABC cân tại A có AM là đường cao
suy ra AM là phân giác ABC
Nên AMB=AMC=70/2=35,5
Xét tam giác AMC có
AMC+ACM+MAC=180
90+ACM+35.5=180
nên ACM=54.5
độ dài các góc không biết nhưng mà biết số đo
tam giác ABC cân tại A
=> góc ACB = (180 - BAC) : 2 => ACB = 55
AB = AC (đn)
xét tam giác AMC và tam giác AMB có : AM chung
góc AMB = góc AMC = 90 do ...
=> tam giác AMC = tam giác AMB (ch - cgv)
=> CAM = góc BAM (đn)
=> CAM = 35
...
Bài 1:
1.Cho tam giác ABC: Góc A= 70 độ, góc B= 50 độ. Hãy so sánh độ dài các cạnh của tam giác ABC.
2. Cho tam giác ABC có AB= 5cm, AC= 12cm, BC= 13cm. Tam giác ABC có dạng dặc biệt nào? Vì sao?
Bài 2:
Cho tam giác ABC cân tại A ( Góc A<90 độ); các đường cao BD; CE (D thuộc AC; E thuộc AB) cắt nhau tại H
a) Chứng minh tam giác ABD= tam giác ACE
b) Chứng minh tam giác BHC là tam giác cân
b2 :
a, xét tam giác ABD và tam giác ACE có: góc A chung
AB = AC do tam giác ABC cân tại A (gt)
góc ADB = góc AEC = 90
=> tam giác ABD = tam giác ACE (ch-cgv)
b, tam giác ABD = tam giác ACE (câu a)
=> góc ABD = góc ACE (đn)
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc HBC = góc ABC - góc ABD
góc HCB = góc ACB - góc ACE
=> góc HBC = góc HCB
=> tam giác HBC cân tại H (Dh)
còn câu 1
Cho tam giác ABC cân tại A có \(\widehat {ABC} = 70^\circ \). Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
b) Chứng minh BD = CE.
c) Chứng minh tia AH là tia phân giác của góc BAC.
a) Tam giác ABC cân tại A nên: \(\widehat {ABC} = \widehat {ACB} = 70^\circ \).
Tổng ba góc trong một tam giác bằng 180° nên: \(\widehat {BAC} = 180^\circ - 70^\circ - 70^\circ = 40^\circ \).
b) Xét tam giác vuông ADB và tam giác vuông AEC có:
AB = AC (tam giác ABC cân);
\(\widehat A\) chung.
Vậy \(\Delta ADB = \Delta AEC\)(cạnh huyền – góc nhọn). Suy ra: BD = CE ( 2 cạnh tương ứng).
c) Trong tam giác ABC có H là giao điểm của hai đường cao BD và CE nên H là trực tâm trong tam giác ABC hay AF vuông góc với BC.
Xét hai tam giác vuông AFB và AFC có:
AB = AC (tam giác ABC cân);
AF chung.
Vậy \(\Delta AFB = \Delta AFC\)(cạnh huyền – cạnh góc vuông). Suy ra: \(\widehat {FAB} = \widehat {FAC}\) ( 2 góc tương ứng) hay \(\widehat {BAH} = \widehat {CAH}\).
Vậy tia AH là tia phân giác của góc BAC.
Ta gọi tam giác có ba góc nhọn. Cho tam giác nhọn ABC, các đường cao BD, CE cắt nhau tại H. Biết góc A =70 độ. Tính số đo các góc ACE, BHC
a)cho tam giác ABC có các đường cao BD và CE bằng nhau . Chứng minh rằng tam giác đó là một tam giác cân
b)Cho tam giác ABC cân tại A,đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC
Vì ΔABC cân tại A nên đường phân giác của góc ở đỉnh A cũng là đường cao từ A.
Suy ra: AD ⊥ BC
Ta có: CH ⊥ AB (gt)
Tam giác ABC có hai đường cao AD và CH cắt nhau tại D nên D là trực tâm của ∆ABC
Suy ra BD là đường cao xuất phát từ đỉnh B đến cạnh AC.
Vậy BD ⊥ AC.
Cho tam giác ABC cân tại A, có góc BAC=30 độ, đường cao BD. Trên tia BD lấy điểm K sao cho BK=AB. Đường phân giác góc A của tam giác ABC cắt BD tại H. Chứng minh:
a) Tam giác ABH = tam giác HAC
b) Tam giác ABK đều
c) Gọi E là trung điểm của AB. Chứng minh CH song song với KE
d) CH = 2 AD
a) Xét ΔABHΔABH và ΔHACΔHAC có
AB=AC;ˆBAH=ˆCAH;AH:chungAB=AC;BAH^=CAH^;AH:chung
⇒⇒ ΔABHΔABH = ΔHACΔHAC (cgc)
b) Có BK = AB ⇒ΔABK⇒ΔABK cân tại B
Tam giác ABC cân tại A có các đường cao BD,CE cắt nhau ở I, biết BIC = 110 độ, tính các góc của tam giác ABC
Xét ΔDBC vuông tại D và ΔECB vuông tại E có
BC chung
\(\widehat{DCB}=\widehat{EBC}\)
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{IBC}=\widehat{ICB}\)
=>ΔICB cân tại I
=>\(\widehat{DBC}=\dfrac{180^0-110^0}{2}=35^0\)
\(\Leftrightarrow\widehat{ACB}=90^0-35^0=55^0\)
\(\Leftrightarrow\widehat{ABC}=55^0\)
hay \(\widehat{BAC}=70^0\)
Cho tam giác ABC cân tại A, góc A = 70 độ, đường cao BD,CE. Gọi M là trung điểm của BC. I,K là chân các đường vuông góc kẻ từ M đến AB, AC. H là trung điểm của DE
a, MIKH là hình gì ?
b, Tính các góc của MIKH