cho tam giác ABC vuông tại A, đường cao AH = 2 cm,AB=3cm .Tính HB,HC,AC,BC
1, Tam giác ABC vuông tại A, kẻ đường cao AH
a.Tính AB, AC,BC, HC nếu AH= 6cm, BH= 4,5cm
b.Biết AB= 6cm, HB- 3cm. Tính AH, AC,CH
5, Cho tam giác ABC vuông tại A có AB=21cm, góc C= 40 độ
a.Tính AC
b,Tính BC
Bài 5:
a) Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(=21\cdot\cot40^0\)
\(\simeq25,03\left(cm\right)\)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)
hay \(BC\simeq32,67\left(cm\right)\)
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=5^2-3^2=16\)
hay AC=4cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=\dfrac{3^2}{5}=1.8\left(cm\right)\\CH=\dfrac{4^2}{5}=3.2\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm
Bài 2:
Ta có: BC=HB+HC
nên BC=3,6+6,4
hay BC=10cm
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3.6\cdot10=36\\AC^2=6.4\cdot10=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=6\left(cm\right)\\AC=8\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8cm
Bài 1: cho tam giác ABC vuông tại A, đường cao AB, đường phân giác BD. Gọi M là giao điểm của AH và BD
a) CM △BAC đồng dạng △BHA
b) tính độ dài đoạn thẳng BC, AH, HB, HC. Biết AB = 3cm, AC = 4cm
c) chứng minh AM.ad = HM.CD
Bài 2: Cho tam giác ABC vuông góc tại A có AB = 12cm, AC = 16cm. Kẻ đường cao AH (HϵBC)
a) chứng minh △AHB đồng dạng △CAB
b) vẽ đường phân giác AD, (DϵBC). Tnhs BD, CD
Bài 3: cho tam giác ABC có AB = 8cm, AC = 12cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm, trên cạnh AC lấy điểm E sao cho AE = 9cm
a) tính các tỉ số \(\dfrac{AE}{AD}\);\(\dfrac{AD}{AC}\)
b) chứng minh △ADE đồng dạng △ABC
c) đường phân giác BAC cắt BC tại I. Chứng minh IB.AE = IC.AD
3:
a: AE/AD=9/6=3/2
AD/AC=6/12=1/2
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
c: IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD
Cho tam giác ABC vuông tại A (AB < AC), có đường cao AH (H thuộc BC)
a) Cho biết HB = 3cm, HC = 9cm. Tính AH, AB, AC?
b) Chứng minh: tan2C + cot2C = HC/HB + HC/HB (không sử dụng số liệu ở câu a để chứng minh).
Cho tam giác ABC vuông tại A có đường cao AH. Biết HB = 3cm, AH = 4cm. Tính AB, HC, BC, AC. Ap dung he thuc luong
Áp dụng HTL tam giác:
\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}HC=\dfrac{AH^2}{BH}=\dfrac{16}{3}\left(cm\right)\\AB^2=3\left(3+\dfrac{16}{3}\right)=25\left(cm\right)\\AC^2=\dfrac{16}{3}\left(3+\dfrac{16}{3}\right)=\dfrac{400}{9}\left(cm\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}HC=\dfrac{16}{3}\left(cm\right)\\AB=5\left(cm\right)\\AC=\dfrac{20}{3}\left(cm\right)\end{matrix}\right.\)
\(BC=\sqrt{AB^2+AC^2}=\dfrac{25}{3}\left(cm\right)\left(pytago\right)\)
Cho tam giác ABC vuông tại A , đường cao AH a, Biết AH = 6 cm , BH = 4,5 cm . Tính AB , AC , BC, HC b, Biết AB=6 cm , BH = 3cm . Tính AH , AC ,HC
Cho tam giác ABC vuông tại A, đường cao AH, biết AH=HC=8 cm. Tính HB, AB, AC BC.
Vẽ hơi xấu , thông cảm nha !
Bài này bạn áp dụng Pytago và Hệ thức lượng ( ở lớp 9 ) !
Áp dụng Py-ta-go ta có : AC2=AH2+HC2= 82+82 = 128 => AC = \(\sqrt{128}\)= \(8\sqrt{2}\)
Rồi bạn áp dụng hệ thức lượng ta tính BC = AC2- HC . ( tính được BC rồi => HB )
tiếp tục tính AB 2 = BC2 - AC2 . Bạn thay số vào là tính được ngay , bài này khá đơn giản với HS lớp 9 ! . CHúc bạn thành công !
Cho tam giác ABC vuông tại A đường cao AH Tính độ dài AB , AC biết HB = 4,5 cm và HC = 8 cm BC = 13 cm và HB - HC = 5 cm BC = 25 cm và HP/HC = 3/2 cm
a: AB=căn 4,5*12,5=7,5cm
AC=căn 8*12,5=10cm
b: HB=(13+5)/2=9cm
HC=13-9=4cm
AB=căn 9*13=3 căn 13cm
AC=căn 4*13=2căn 13cm
cho tam giác abc vuông tại a, 1 đường thẳng vuông góc với bc tại d cắt ac,ab tại e, f.
chứng minh
a)db.dc=de.df
b)AH là đướng cao của tam giác abc, biết HB = 3cm, HC = 12cm. Tính AH