(\(\dfrac{a}{b}\))\(^3\)=\(\dfrac{1}{1000}\) và b-a=36
bài 1 : so sánh :
a) \(\dfrac{23}{21}\)và\(\dfrac{21}{23}\)
b)\(\dfrac{19}{26}\)và \(\dfrac{21}{25}\)
bài 2 : sắp sếp các phân số sau từ bé đến lớn :
a)\(\dfrac{7}{36};\dfrac{24}{36};\dfrac{13}{36};\dfrac{1}{36};\dfrac{43}{36};\dfrac{36}{36}\)
b)\(\dfrac{-3}{10};\dfrac{-31}{100};\dfrac{-297}{1000};\dfrac{10000}{-3056}\)
c)\(\dfrac{13}{20};\dfrac{7}{20};\dfrac{9}{4};\dfrac{2}{5};\dfrac{1}{2}\)
d)\(\dfrac{13}{21};\dfrac{152}{17};\dfrac{13}{17};\dfrac{-5}{21}\)
e)\(\dfrac{-1}{2};\dfrac{3}{-4};\dfrac{-2}{3};\dfrac{4}{-5}\)
Cho x2 + y2 = 1 và bx2 = ay2
Chứng minh rằng : \(\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
\(bx^2=ay^2\Rightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}=\dfrac{x^2+y^2}{a+b}=\dfrac{1}{a+b}\)
\(\Rightarrow\left(\dfrac{x^2}{a}\right)^{1000}=\left(\dfrac{y^2}{b}\right)^{1000}=\left(\dfrac{1}{a+b}\right)^{1000}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}=\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}\)
\(\Rightarrow\dfrac{x^{2000}}{a^{1000}}+\dfrac{y^{2000}}{b^{1000}}=\dfrac{1}{\left(a+b\right)^{1000}}+\dfrac{1}{\left(a+b\right)^{1000}}=\dfrac{2}{\left(a+b\right)^{1000}}\)
1, Chứng minh
a) A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+....+\dfrac{1}{18.19.20}< \dfrac{1}{4}\)
b) B=\(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+....+\dfrac{36}{25.26.27}< 3\)
a, A= 1/2. (2/1.2.3+2/2.3.4+2/3.4.5+...+2/18.19.20) A=1/2. (1/1.2-1/2.3+1/2.3-1/3.4+1/3.4-1/4.5+...+1/18.19-1/19.20) A=1/2. (1/1.2-1/19.20) A=1/2. 189/380 A= 189/760
1, Tìm các số hữu tỉ:
a) Có dạng \(\dfrac{12}{b}\) sao cho \(\dfrac{-8}{19}< \dfrac{12}{b}< \dfrac{-2}{5}\)
b) Có dạng \(\dfrac{9}{b}\) sao cho \(\dfrac{8}{11}< \dfrac{9}{b}< \dfrac{12}{13}\)
2, Tính:
M=\(54-\dfrac{1}{2}\left(1+2\right)-\dfrac{1}{3}\left(1+2+3\right)-\dfrac{1}{4}\left(1+2+3+4\right)-...\dfrac{1}{12}\left(1+2+3+...+12\right)\)
3, Rút gọn các biểu thức sau:
a) A= \(\dfrac{9^9+27^7}{9^6+243^3}\)
b) B= \(\dfrac{\left(\dfrac{2}{3}\right)^5.\left(\dfrac{-27}{8}\right)^2.729}{\left(\dfrac{3}{2}\right)^4.216}\)
4, Cho a,b,c là các số nguyên dương sao cho mỗi số nhỏ hơn tổng của hai số kia. Chứng minh rằng \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
5, Cho A= \(\dfrac{1001}{1000^2+1}+\dfrac{1001}{1000^2+2}+...+\dfrac{1001}{1000^2+1000}\)
Chứng minh rằng 1<A2 < 4
Cho \(\dfrac{a}{3}\) = \(\dfrac{b}{5}\) và b2 - a2 = 36 . Tìm a , b
Ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}\Leftrightarrow a=\dfrac{3b}{5}\)
Khi đó:
\(b^2-a^2=36\Leftrightarrow b^2-\dfrac{9b^2}{25}=36\\ \Leftrightarrow\dfrac{16b^2}{25}=36\Leftrightarrow b^2=\dfrac{225}{4}\Leftrightarrow b=\dfrac{\pm15}{2}\)
Với \(b=\dfrac{15}{2}\) suy ra: \(a=\dfrac{3b}{5}=\dfrac{3}{5}.\dfrac{15}{2}=\dfrac{9}{2}\)
Với \(b=\dfrac{-15}{2}\) suy ra: \(a=\dfrac{3b}{5}=\dfrac{3}{5}.\dfrac{-15}{2}=\dfrac{-9}{2}\)
Tìm các chữ số a,b,c để :
a) Phân số \(\dfrac{36}{ab}\) = a + b
b)Phân số \(\dfrac{1000}{a+b+c}\) = \(\dfrac{ }{abc}\)
1 So sánh
a) \(\dfrac{51}{56}và\dfrac{61}{66}\)
b)\(\dfrac{41}{43}và\dfrac{172}{165}\)
c)\(\dfrac{101}{506}và\dfrac{-707}{3534}\)
d) \(\dfrac{-43}{119}và\dfrac{41}{117}\)
2 Rút gọn và quy đồng
a)\(\dfrac{125}{1000};\dfrac{198}{126};\dfrac{3}{243};\dfrac{103}{3009}\)
b)\(\dfrac{1}{2};\dfrac{1}{3};\dfrac{1}{38};\dfrac{-1}{12}\)
c)\(\dfrac{9}{30};\dfrac{90}{8};\dfrac{15}{1000}\)
3 So sánh
a)\(\dfrac{-3}{5}và\dfrac{39}{65}\)
b)\(\dfrac{-9}{27}và\dfrac{11}{123}\)
c) \(\dfrac{-3}{4}và\dfrac{4}{-5}\)
d)\(\dfrac{2}{-3}và\dfrac{5}{7}\)
a: 51/56=1-5/56
61/66=1-5/66
mà -5/56<-5/66
nên 51/56<61/66
b: 41/43<1<172/165
c: \(\dfrac{101}{506}>0>-\dfrac{707}{3534}\)
Tính tổng các phân số sau :
a) A = \(\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+........+\dfrac{36}{45.47.49}\)
b) B= \(\left(1-\dfrac{1}{3}\right).\left(1-\dfrac{1}{9}\right).\left(1-\dfrac{1}{16}\right)......\left(1-\dfrac{1}{10000}\right)\)
c) C = 3+33+333+3333+...........+333........333
So sánh A và B biết:
a) A= \(\dfrac{15^{16}+1}{15^{17}+1}\) và B= \(\dfrac{15^{15}+1}{15^{16}+1}\)
b) A= \(\dfrac{2006^{2007}+1}{2006^{2006}+1}\) và B= \(\dfrac{2006^{2006}+1}{2006^{2005}+1}\)
c) A= \(\dfrac{1000^9+2}{1000^9-1}\) và B= \(\dfrac{1000^9+1}{1000^9-2}\)
a) Vì A=\(\dfrac{15^{16}+1}{15^{17}+1}\) < 1
\(\Rightarrow\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}\) \(=\dfrac{15\left(15^{15}+1\right)}{15\left(15^{16}+1\right)}\) \(=\dfrac{15^{15}+1}{15^{16}+1}\)
Vậy A<B
b) A=\(\dfrac{2006^{2007}+1}{2006^{2006}+1}>1\)
\(\Rightarrow\dfrac{2006^{2007}+1+2005}{2006^{2006}+1+2005}\)
= \(\dfrac{2006^{2007}+2006}{2006^{2006}+2006}\)
= \(\dfrac{2006\left(2006^{2006}+1\right)}{2006\left(2006^{2005}+1\right)}\)
= \(\dfrac{2006^{2006+1}}{2006^{2005}+1}\)
Vậy A>B
a, \(A=\dfrac{15^{16}+1}{15^{17}+1}\) và \(B=\dfrac{15^{15}+1}{15^{16}+1}\)
A = \(\dfrac{15^{16}+1}{15^{17}+1}< 1\)
Vì A = \(\dfrac{15^{16}+1}{15^{17}+1}< \dfrac{15^{16}+1+14}{15^{17}+1+14}=\dfrac{15^{16}+15}{15^{17}+15}=\) \(\dfrac{15.\left(15^{15}+1\right)}{15.\left(15^{16}+1\right)}=\dfrac{15^{15}+1}{15^{16}+1}=B\)