Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Duong Thi Nhuong
Xem chi tiết
Nguyễn Phương HÀ
29 tháng 6 2016 lúc 9:46

ta có : AB//CD và AD//BC

=> ABCD là hình bình hành

=>theo tính chất hình bình hành thì AB=CD VÀ BD = AD

B) nếu O là giao hai đường chéo thì mới làm dduocj 

theo tính chất hình bình hành thì hai đường chéo giao nhau tại trung điểm mỗi đường 

=> OC=OA và OB=OD

Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:35

loading...

 

Đỗ Bình An
Xem chi tiết
Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 20:22

Gọi giao của AB và CD là O

a: AB vuông góc CD

AC^2-BC^2

=AO^2+OC^2-CO^2-BO^2

=AO^2-BO^2

=AO^2+OD^2-OD^2-OB^2

=AD^2-BD^2

b: AC^2-BC^2=AD^2-BD^2

=>AC^2-AD^2=BC^2-BD^2

=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2

=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)

=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)

=>vecto DC*vecto AB=0

=>DC vuông góc AB

 

ngô thị gia linh
Xem chi tiết
Lê Nhật Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 7 2023 lúc 19:50

AC^2-AD^2=BC^2-BD^2

 

=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2

=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)

=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)

=>vecto DC*vecto AB=0

=>DC vuông góc AB

super xity
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 7 2016 lúc 12:57

A B C D O

Gọi O là giao điểm hai đường chéo AC và BD

Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được : 

\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)

\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)

Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được : 

\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)

Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)

\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)

Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)

hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)

Phan Văn Hiếu
19 tháng 7 2016 lúc 11:24

ve hin hra roi nghi cach cm 

nguyễn anh minh
19 tháng 7 2016 lúc 11:40

mày bảo cho hình mà =))))

Elizabeth
Xem chi tiết
Ngô Nữ Tuyết Nhi
Xem chi tiết