cho 2 đoạn thẳng AB//OD , AB= CD. chứng minh AD // BC và AD = BC
Cho hình vẽ biết AB // CD; AD // BC.
a) Chứng minh AB = CD; AD = BC | b) Chứng minh OA = OC ; OB = OD
ta có : AB//CD và AD//BC
=> ABCD là hình bình hành
=>theo tính chất hình bình hành thì AB=CD VÀ BD = AD
B) nếu O là giao hai đường chéo thì mới làm dduocj
theo tính chất hình bình hành thì hai đường chéo giao nhau tại trung điểm mỗi đường
=> OC=OA và OB=OD
cho đoạn thẳng AB và CD a)Chứng minh nếu AB vuông góc với CD thì AC^2 -BC^ = AD^2 - BD^2 b) Chứng minh ngược lại với câu a, có AC^2 -BC^ = AD^2 - BD^2 thì AB vuông góc với CD Sài định lí 4 điểm nha mọi người!
cho đoạn thẳng AB và CD a)Chứng minh nếu AB vuông góc với CD thì AC^2 -BC^ = AD^2 - BD^2 b) Chứng minh ngược lại với câu a, có AC^2 -BC^ = AD^2 - BD^2 thì AB vuông góc với CD Sài định lí 4 điểm nha mọi người!
Mình cần gấp!
Gọi giao của AB và CD là O
a: AB vuông góc CD
AC^2-BC^2
=AO^2+OC^2-CO^2-BO^2
=AO^2-BO^2
=AO^2+OD^2-OD^2-OB^2
=AD^2-BD^2
b: AC^2-BC^2=AD^2-BD^2
=>AC^2-AD^2=BC^2-BD^2
=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2
=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)
=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)
=>vecto DC*vecto AB=0
=>DC vuông góc AB
Cho đoạn thẳng AB. Vẽ đường thẳng xy // AB. Lấy điểm C trên xy sao cho BC không vuông góc với xy . Lấy điểm D trên xy sao cho AD // BC . Chứng minh AB = CD và BC = AD
help me !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho hai đoạn thẳng AB và CD cắt nhau tại H. Chứng minh rằng: AB⊥CD khivàchỉkhi AC^2−AD^2=BC^2−BD^2
Giúp mình với mọi người!
AC^2-AD^2=BC^2-BD^2
=>(vecto AC)^2-(vecto AD)^2=(vecto BC)^2-(vecto BD)^2
=>(vecto AC-vecto AD)(vecto AC+vecto AD)=(vecto BC-vecto BD)(vecto BC+vecto BD)
=>vecto DC*vecto AM*2=vecto DC*vecto BM*2(M là trung điểm của DC)
=>vecto DC*vecto AB=0
=>DC vuông góc AB
Cho tứ giác ABCD. Gọi O là giao điểm hai đường chéo AC và BD
a, Chứng minh AB+BC+CD+AD / 2 < OA+OB+OC+OD<AB+BC+CD+AD
Gọi O là giao điểm hai đường chéo AC và BD
Xét lần lượt các tam giác OAB , OBC , OCD , OAD và áp dụng bất đẳng thức tam giác được :\(OA+OB>AB\) ; \(OB+OC>BC\) ; \(OC+OD>CD\) ; \(OA+OD>AD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(OA+OB+OC+OD\right)>AB+BC+CD+AD\)
\(\Rightarrow2\left(AC+BD\right)>AB+BC+CD+AD\) \(\Rightarrow AC+BD>\frac{AB+BC+CD+DA}{2}\) (1)
Tương tự, lần lượt xét các tam giác ACD , BCD , BAC , ABD và áp dụng bất đẳng thức tam giác được :\(AD+CD>AC\) ; \(BC+CD>BD\) ; \(AB+BC>AC\) ; \(AB+AD>BD\)
Cộng các bất đẳng thức trên theo vế được : \(2\left(AC+BD\right)< 2\left(AB+BC+CD+DA\right)\)
\(\Rightarrow AC+BD< AB+BC+CD+DA\)(2)
Từ (1) và (2) ta có : \(\frac{AB+BC+CD+DA}{2}< AC+BD< AB+BC+CD+AD\)
hay \(\frac{AB+BC+CD+DA}{2}< OA+OB+OC+OD< AB+BC+CD+AD\)
cho đoạn thẳng AB. O nam giua A va B. ke Ox vuông góc với AB. lấy CD thuộc Ox sao cho
OC = OA, OD = OB, M la trung điểm của AD , N là trung điểm của BC. chứng minh:
a) AD = BC
b) OM = ON ; OM _l_ ON
Cho đường tròn (O;R) và đường tròn (I;r) cắt nhau tại A và B. Đoạn thẳng AB cắt đoạn thẳng OI tại H
A, chứng minh: AD=BC
B, chứng minh: AD// BC
C, chứng minh: AB=CD
D, chứng minh: AB//CD