Cho tam giác ABC A= 900 . Qua trung điểm I của AC, dựng ID ⊥ BC. Chứng minh : BD2-CD2=AB2
Cho tam giác ABC vuông tại A có I là trung điểm của AC. Vẽ ID vuông góc với
cạnh huyền BC, (De BC).
a)Chứng minh AB2 = BD? _ CD2
b) Biết AB = 6cm; AC = 8cm. Em hãy giải tam giác vuông ABC
Nối B vs I. Xét tam giác BID vuông tại D, có:
BD2 = BI^2 - ID2 (1).Xét tam giác ICD vuông tại D, có:
DC2 = IC2 - ID2 (2).Từ (1) và (2) =>
=> BD2 - DC2
= BI2 - ID2 - IC2 + ID2
= BI2 - IC2
= BI2 - AI2 (vì AM=CM)
= AB2=> AB2 = BD2 - DC2 (đpcm)
a: \(BD^2-CD^2\)
\(=BI^2-ID^2-CI^2+ID^2=BI^2-CI^2=BI^2-AI^2=BA^2\)
b: \(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)
sin B=AC/BC=4/5
=>góc B=53 độ
=>góc C=37 độ
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2
Cho tam giác ABC. Gọi I là giao điểm của hai đường phân giác của góc trong ABC và AB của tam giác ABC. Vẽ ID ⊥ AB tại D, IE ⊥ AC tại E. Chứng minh rằng:
a) ID=IE
b) \(\widehat{BIC}\)= 900 + \(\dfrac{\widehat{BAC}}{2}\)
C) IA2+ IB2 = 2ID2 + AD2 + BD2
d) DB + EC = BC
Cho tam giác ABC(AB<AC) có đường cao AH . Gọi I là trung điểm của AC .Kẻ IN vuông góc với BC(N thuộc BC) . a) Chứng minh tam giác ABC đồng dạng với tam giác NIC và CA.CI=CB.CN . b) Chúng minh AB2=BH.BC=NB2-NC2
cho tam giác ABC có AB = AC. Gọi I là trung điểm của BC. a) chứng minh tam giác AIB = tam giác AIC b) Kẻ đường thẳng qua I và vuông góc với AB tại D. Trên tia đối của tia ID lấy điểm E sao cho ID = IE. Chứng minh AB // CE c) Kẻ EK vuông góc với BC tại K, cắt cạnh AC tại H. Chứng minh HD // AI
Cho tam giác ABC nhọ. Dựng về phía ngoài tam giác các tam giác đều ABD và ACE.
1) Chứng minh BE =CD
2) Gọi M, N, P là trung điểm các đoạn thẳng AD, BC, AE. Chứng minh tam giác MNP đều
cho tam giác abc( ab < ac) . gọi i là trung điểm của ac . trên tia đối của tia ib lấy điểm d , sao cho ib = id
a, chứng minh tam giác aib= tam giác cid
b, chứng minh ad = bc và ad // bc
a) Xét ΔAIB và ΔCID có
IA=IC(I là trung điểm của AC)
\(\widehat{AIB}=\widehat{CID}\)(hai góc đối đỉnh)
IB=ID(gt)
Do đó: ΔAIB=ΔCID(c-g-c)
b) Xét ΔAID và ΔCIB có
IA=IC(I là trung điểm của AC)
\(\widehat{AID}=\widehat{CIB}\)(hai góc đồng vị)
ID=IB(gt)
Do đó: ΔAID=ΔCIB(c-g-c)
Suy ra: AD=CB(Hai cạnh tương ứng) và \(\widehat{DAI}=\widehat{BCI}\)(hai góc tương ứng)
mà \(\widehat{DAI}\) và \(\widehat{BCI}\) là hai góc ở vị trí so le trong
nên AD//BC(Dấu hiệu nhận biết hai đường thẳng song song)
cho tam giác ABC có AB = AC , gọi I là trung điểm của BC a. chứng minh tam giác ABI= tam giác ACI
b.kẻ đường thẳng qua I và vuông góc với AB tại D.Trên tia đối của tia ID lấy điểm E sao cho ID = IE .Chứng minh AB song song CE
c.kẻ EK vuông góc với BC tại K ,cắt mạnh AC tại H .Chứng minh HD vuông góc với AI
a: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
Do đó: ΔABI=ΔACI
b: Xét tứ giác BDCE có
I là trung điểm chung của BD và CE
nên BDCE là hình bình hành
=>CE//AB
Cho tam giác cân ABC (AB = AC), đường cao CD (D ở giữa A và B).
Chứng minh rằng: AB2 + BC2 + AC2 = BD2 + 2AD2 + 3DC2