Chứng minh đẳng thức: \(\dfrac{3x-2y}{5x-3y}=\dfrac{15x^2-xy-6y^2}{25x^2-9y^2}\)
Cho đa thức sau:
A=16x^4-8x^3y+7x^2y^2-9y^4
B=-15x^4+3x^3y+3x^3y-5x^2y^2-6y^4
C=5x^3y+3x^2y^2+17y^4+1
Chứng minh rằng ít nhất 1 trong 3 đa thức có giá trị
BT13: Cho\(A=16x^4-8x^3y+7x^2y^2-9y^4\),\(B=-15x^4+3x^3y-5x^2y^2-6y^4\) và \(C=5x^3y+3x^2y^2+17y^4+1\)
a, Tính A+B-C
b, Tính A-C+B
\(a,A+B-C=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)+\left(-9y^4-6y^4-17y^4\right)-1\)
\(=x^4-10x^3y-x^2y^2-32y^4-1\)
\(b,A-C+B=A+B-C\) ( giống câu a )
\(a,\)
\(A+B+C\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-5x^3y-3x^2y^2-17y^4-1\)
\(=\left(16x^4-15x^4\right)+\left(-9y^4-6y^4-17y^4\right)+\left(-8x^3y+3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2-3x^2y^2\right)-1\)
\(=x^4-32y^4-10x^3y-x^2y^2-1\)
\(b,\)
\(A-C+B=A+B-C=x^4-32y^4-10x^3y-x^2y^2-1\)
a: A+B-C
=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4-C
=x^4-5x^3y+2x^2y^2-15y^4-5x^3y-3x^2y^2-17y^4-1
=x^4-10x^3y-x^2y^2-32y^4-1
b: A-C+B=A+B-C=x^4-10x^3y-x^2y^2-32y^4-1
Cho đa thức :
A = 16x^4 -8x^3y +7x^2y^2 -9y^4
B = -15x^4 +3x^3y -5x^2y^2 -6y^4
C = 5x^3y +3x^2y^2 +17y^4 +1
CMR : Ít nhất một trong Ba đa thức này phải có một đa thức có giá trị dương với mọi x,y
Giả sử 3 đa thức trên cùng nhận giá trị âm với mọi x, y.
Ta có: \(A.B.C\)\(=\left(16x^4-8x^3y+7x^2y^2-9y^4\right)+\left(-15x^4+3x^3y-5x^2y^2-6y^4\right)+\left(5x^3y+3x^2y^2+17y^4+1\right)\)
\(=16x^4-8x^3y+7x^2y^2-9y^4-15x^4+3x^3y-5x^2y^2-6y^4+5x^3y+3x^2y^2+17y^4+1\)
\(=\left(16x^4-15x^4\right)-\left(8x^3y-3x^3y-5x^3y\right)+\left(7x^2y^2-5x^2y^2+3x^2y^2\right)-\left(9y^4+6y^4-17y^4\right)+1\)
\(=x^4-0+5x^2y^2-2y^4+1\)
\(=x^4+5x^2y^2-2y^4+1\)
Ta thấy: \(x^4\ge0\) \(\forall x\) \(;\) \(x^2y^2\ge0\)\(\forall x,y\) \(;\) \(y^4\ge0\)\(\forall y\)
\(\Rightarrow\)\(\left(x^4+5x^2y^2-2y^4+1\right)\ge1\) \(\forall x,y\)
\(\Rightarrow\)\(A.B.C\)nhận giá trị dương
\(\Rightarrow\)3 đa thức trên không thể cùng nhận giá trị âm với mọi x, y
\(\Rightarrow\)\(dpcm\)
Thực hiện phép tính :
a/ (x - 1)^2 - (4x + 3) (2 - x)
b/ (15x^3y^2 - 6x^2y^3) : 3x^2y^2 = (15x^3y^2 : 3x^2y^2) - (6x^2y^3 : 3x^2y^2) = 5x - 2y
c/\(\dfrac{x+7}{x-7}\) - \(\dfrac{x-7}{x+7}\) +\(\dfrac{4x^2}{x^2-49}\)
a/ (x-1)2-(4x+3)(2-x)=x2-2x+1-(8x-4x2+6-3x)
=x2-2x+1-8x+4x2-6+3x=5x2-7x-6
b/ (15x3y2 - 6x2y3) : 3x2y2 = 5x - 2y
c/ \(\dfrac{x+7}{x-7}-\dfrac{x-7}{x+7}+\dfrac{4x^2}{x^2-49}\)=\(\dfrac{\left(x+7\right)^2-\left(x-7\right)^2+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{x^2+14x+49-\left(x^2-14x+49\right)+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{28x+4x^2}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x\left(x+7\right)}{\left(x-7\right)\left(x+7\right)}\)=\(\dfrac{4x}{x-7}\)
\(\dfrac{x^2+3xy}{x^2-9y^2}+\dfrac{2x^2-5xy-3y^2}{x^2-6xy+9y^2}=\dfrac{3x^2+2xy+3xz+6yz}{x^2-3yz+xz-3xy}\)
Chứng minh đẳng thức trên
xin hỏi bạn có viết lộn không, vế trái không có Z mà tại sao vế phải lại xuất hiện Z vậy
\(\dfrac{2x^3-2y^3}{3x+3y}.\dfrac{15x^2-15y^2}{x^2+xy+y^2}\)
\(=\dfrac{30\left(x^3-y^3\right)\left(x^2-y^2\right)}{3\left(x+y\right)\left(x^2+xy+y^2\right)}=\dfrac{10\left(x-y\right)^2\left(x+y\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)\left(x^2+xy+y^2\right)}=10\left(x-y\right)^2\)
a \(\dfrac{25x^3y}{7z}\cdot\dfrac{28z}{15x^2y^5}\)
b \(\dfrac{x^2+3x+9}{2x+10}\cdot\dfrac{x+5}{x^3+27}\)
c \(\dfrac{3x-6}{x-1}\cdot\dfrac{1-x^3}{10-5x}\)
d \(\dfrac{3x-2}{x^2+1}\cdot\dfrac{x-1-x^2}{4-9x^2}\)
a) \(\dfrac{25x^3y}{7z}.\dfrac{28z}{15x^2y^5}\)
\(=\dfrac{25x^3y.28z}{7z.15x^2y^5}\)
\(=\dfrac{700x^3yz}{105x^2y^5z}\)
\(=\dfrac{20x}{3y^4}\)
b) \(\dfrac{x^2+3x+9}{2x+10}.\dfrac{x+5}{x^3+27}\)
\(=\dfrac{\left(x^2+3x+9\right)\left(x+5\right)}{\left(2x+10\right)\left(x^3+27\right)}\)
\(=\dfrac{x^3+3x^2+9x+5x^2+15x+45}{2x^4+54x+10x^3+270}\)
\(=\dfrac{x^3+8x^2+24x+45}{2x^4+10x^3+54x+270}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ne\dfrac{2}{15}\\y\ne-\dfrac{4}{9}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}9y+6+20x-16=0\\\left(5x-4\right)\left(9y+4\right)=\left(3y+2\right)\left(15x-2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20x+9y=10\\5x+15y=-6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{5}\\y=-\dfrac{2}{3}\end{matrix}\right.\)
BT11: Tìm hiệu A-B biết
\(a,-x^2y+A+2xy^2-B=3x^2y-4xy^2\)
\(b,5xy^2-A-6yx^2+B=-7xy^2+8x^2y\)
\(c,3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y\)
\(d,-6x^2y^3+A-3x^3y^2-B=2x^2y^3-7x^3y\)
\(e,A-\dfrac{3}{8}xy^2-B+\dfrac{5}{6}x^2y=\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\)
\(f,5xy^3-A-\dfrac{5}{8}yx^3+B=\dfrac{21}{4}xy^3-\dfrac{7}{6}x^3y\)
a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2
b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y
=>A-B=12xy^2-14x^2y
c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2
=>A-B=-5x^2y^3-x^3y^2
d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2