Cho nửa đường tròn tâm O đường kính AB=2R và tiếp tuyến Ax, By với nửa đường tròn.Một tiếp tuyến thứ ba tại M với với nửa đường tròn đó cắt Ax; By lần lượt ở C và D. AM và BN thứ tự cắt OC vàOD tại E và F
a. Chứng minh tứ giác OEMF là hình chữ nhật
Cho nửa đường tròn tâm O đường kính AB=2R và tiếp tuyến Ax, By với nửa đường tròn.Một tiếp tuyến thứ ba tại M với với nửa đường tròn đó cắt Ax; By lần lượt ở C và D. AM và BN thứ tự cắt OC vàOD tại E và F
a. Chứng minh tứ giác OEMF là hình chữ nhật
Xét (O) co
CM,CA là các tiếp tuyên
nên CM=CA
mà OM=OA
nên OC là đường trung trực của AM
=>OC vuông góc với AM
Xét (O) có
DM,DB là các tiếp tuyến
nen DM=DB
mà OM=OB
nên OD là đường trung trực của MB
=>OD vuông góc với MB
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác OEMF có
góc OEM=góc OFM=góc FME=90 độ
nên OEMF là hình chữ nhật
Bài 8. Cho nữa đường tròn tâm O, đường kính AB=2R. Từ A và B kẻ 2 tiếp tuyến Ax, By . Từ M bất kỳ trên nửa đường tròn kẻ tiếp tuyến thứ ba với nửa đường tròn đó, tiếp tuyến này cắt Ax tại C và cắt By tại D. a) Chứng minh: O, A, C, M cùng thuộc một đường tròn. b) Chứng minh: O, B, D. M cùng thuộc một đường tròn c) Chứng minh: CD=AC+BD. d) Chứng minh: ACOD vuông. e) Chứng minh: AC.BD không đổi khi M thay đổi trên nửa đường tròn (O).
Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh OC vuông góc AM và AM song song OD
b) chứng minh AC.BD = R^2
c) Chứng minh AB là tiếp tuyến đường tròn đường kính CD
d) Gọi K là giao điểm của AD và BC. Chứng minh MK vuông góc AB
a: Xét (O) có
CA,CM là tiếp tuyến
nênCA=CM và OC là phân giác của góc AOM(1)
mà OA=OM
nên OC là trung trực của AM
=>OC vuông góc với AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Xét (O)có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>MB vuông góc MA
=>MB//OC
b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ
=>OC vuông góc với OD
mà OM vuông góc DC
nên MC*MD=OM^2
=>AC*BD=R^2
c: Gọi H là trung điểm của CD
Xét hình thang ABDC có
H,O lần lượtlà trung điểm của CD,AB
nên HO là đường trung bình
=>HO//AC//BD
=>HO vuông góc với AB
=>AB là tiếp tuyến của (H)
Bài 4. (2đ): Cho nửa đường tròn tâm O đường kính AB = 2R. Từ A và B lần lượt kẻ hai tiếp tuyến
Ax và By với nửa đường tròn. Qua điểm M thuộc nửa đường tròn (M khác A và B) kẻ tiếp
tuyến thứ ba cắt các tiếp tuyến Ax và By lần lượt tại C và D.
a. Chứng minh rằng :Tứ giác AOMC nội tiếp.
b. KhiBAM= 600. Chứng tỏ BDM là tam giác đều và tính diện tích của hình quạt tròn
chắn cung MB của nửa đường tròn đã cho theo R.
a: góc OAC+góc OMC=180 độ
=>OACM nội tiếp
b: góc BOM=2*60=120 độ
=>góc BDM=60 độ
=>ΔBMD đều
\(S_{qMB}=\dfrac{pi\cdot R^2\cdot120}{360}=\dfrac{1}{3}\cdot pi\cdot R^2\)
Cho nửa đường tròn tâm O đường kính AB=2R . Kẻ hai tiếp tuyến Ax và By (Ax và By nằm cùng phía với nửa đường tròn). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt Ax và By theo thứ tự ở C và D.
Chứng minh rằng
Chứng minh 4 điểm B,D,M,O nằm trên cùng một đường tròn, chỉ ra bán kính của đường tròn đó.
Chứng minh CD=AC+BD
Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Gọi giao điểm AD và BC là N. Chứng minh MN//AC
b: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
Do đó: DM=DB
Ta có: CM+MD=CD
nên CD=AC+BD
Cho nửa đường tròn tâm O đường kính AB=2R . Kẻ hai tiếp tuyến Ax và By (Ax và By nằm cùng phía với nửa đường tròn). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt Ax và By theo thứ tự ở C và D.
Chứng minh rằng
a) chứng minh COD = 90 độ
b) Chứng minh 4 điểm B,D,M,O nằm trên cùng một đường tròn, chỉ ra bán kính của đường tròn đó.
c) Chứng minh CD=AC+BD
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
e) chứng minh AB là tiếp tuyến của đường tròn đường kính CD
f) Gọi giao điểm AD và BC là N. Chứng minh MN//AC
a: Xét (O) có
CM,CA là tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)
OC là phân giác của \(\widehat{AOM}\)
nên \(\widehat{AOM}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là tiếp tuyến
DO đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)
Ta có: OD là phân giác của \(\widehat{MOB}\)
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)
b: Xét tứ giác BDMO có
\(\widehat{OMD}+\widehat{OBD}=90^0+90^0=180^0\)
=>BDMO là tứ giác nội tiếp đường tròn đường kính OD
=>B,D,M,O cùng nằm trên đường tròn đường kính OD
Bán kính là \(R'=\dfrac{OD}{2}\)
c: Ta có: CD=CM+MD
mà CM=CA
và DM=DB
nên CD=CA+DB
d,e: Gọi N là trung điểm của CD
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Ta có: ΔCOD vuông tại O
=>ΔCDO nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
hay AB là tiếp tuyến của đường tròn đường kính CD(ĐPCM)
f: Xét ΔNCA và ΔNBD có
\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)
\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)
Do đó: ΔNCA đồng dạng với ΔNBD
=>\(\dfrac{NC}{NB}=\dfrac{NA}{ND}=\dfrac{AC}{BD}=\dfrac{CM}{MD}\)
Xét ΔDCA có \(\dfrac{NA}{ND}=\dfrac{CM}{MD}\)
nên MN//AC
cho nửa đường tròn tâm O , đường kính AB =2R và K là một điểm tùy ý trên nửa đường tròn ( K khác A và B). kẻ hai tiếp tuyến Ax và By tại M với nửa đường tròn . Qua K kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại M và H. a/cm: MH=AM+BH và AK//OH b/ cm: AM.BH=R2 c / đường thẳng AB và MH cắt nhau tại E.cm:ME.HK=MK.HE
c ơi c làm dc chưa ạ? e cũng đang cần bài này ạ
Cho nửa đường tròn (O) đường kính AB, trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tiếp tuyến Ax, By với đường tròn (O). Lấy M trên nửa đường tròn. Qua M kẻ tiếp tuyến thứ ba với nửa đường tròn, tiếp tuyến này cắt Ax, By theo thứ tự tại C và D.
a) Chứng minh điểm O nằm trên đường tròn (O') đường kính CD.
b) Gọi giao điểm của CO và AM là I, giao điểm của MB và OD là K. Chứng minh MO = IK.
c) Chứng minh AB là tiếp tuyến của đường tròn (O') đường kính CD.
d) Chứng minh rằng khi M chạy trên nửa đường tròn (O) thì trung điểm của MI chạy trên đường cố định.
a: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
=>O nằm trên đường tròn đường kính CD
b: Xét tứ giác MIOK có
góc MIO=góc IOK=góc MKO=90 độ
nên MIOK là hình chữ nhật
=>MO=IK
c: Xét hình thang ABDC có
O,O' lần lượt là trung điểm của AB,CD
nên OO' là đường trung bình
=>OO''//AC
=>OO' vuông góc với AB
=>AB là tiếp tuyến của (O')
Cho nửa đường tròn (O), đường kính AB = 2R. Trên cùng một nửa mặt phẳng bờ AB kẻ 2 tiếp tuyến Ax, By với nửa (O). Lấy M bất kì trên nửa (O). Kẻ tiếp tuyến thứ ba với nửa đường tròn tại M cắt Ax, By thứ tự ở C, D. Gọi giao điểm của BM và Ax là E. Gọi H là hình chiếu của M trên AB, K là giao điểm của BC và MH.
a) Tìm vị trí điểm M để \(S_{ACDB}\) nhỏ nhất
b) Chứng minh: 3 đường thẳng BC, AD, MH đồng quy.
c) Chứng minh: OE vuông góc AD.
Cho nửa đường tròn tâm O , đường kính AB = 2R , M là một điểm tùy ý trên nửa đường tròn ( M ≠ A ; B ). Kẻ hai tiếp tuyến Ax và By với nửa đường tròn . Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C và D
a) Chứng minh : CD = AC + BD và góc COD = 90 độ
c) OC cắt AM tại R , OD cắt BM tại F . Chứng minh EF = R
d) Tìm vị trí của M để CD có độ dài nhỏ nhất
a: Xét (O) có
CM,CA là tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là trung trực của AM
Xét (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
c: Xét tứ giác MEOF có
góc MEO=góc MFO=góc EOF=90 độ
nên MEOF là hình chữ nhật
=>EF=MO=R