Xác định tập nghiệm của phương trình x^2 - (3m+1)x + 3m
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho phương trình :
\(x^2-2\left(m-1\right)x+m^2-3m=0\)
a) Xác định m để phương trình có 2 nghiệm phân biệt
b) Xác định m để phương trình có đúng 1 nghiệm âm
c) Xác định m để phương trình có 1 nghiệm bằng 0. Tìm nghiệm còn lại
d) Tìm hệ thức liên hệ giữa 2 nghiệm x1, x2 của phương trình không phụ thuộc và m
e) Xác định m để phương trình có 2 nghiệm thỏa mãn \(x1^2+x2^2=8\)
x2-2(m-1)x+m2-3m=0
△'=[-(m-1)]2-1(m2-3m)=(m-1)2-(m2-3m)=m2-2m+1-m2+3m= m+1
áp dụng hệ thức Vi-ét ta được
x1+x2=2(m-1) (1)
x1*x2=m2-3m (2)
a) để PT có 2 nghiệm phân biệt khi m+1>0 <=> m>-1
b) để PT có duy nhất một nghiệm âm thì x1*x2 <0
e) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m^2-3m\end{matrix}\right.\)
Ta có: \(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow\left(2m-2\right)^2-2\cdot\left(m^2-3m\right)-8=0\)
\(\Leftrightarrow4m^2-8m+4-2m^2+6m-8=0\)
\(\Leftrightarrow2m^2-2m-4=0\)(1)
\(\Delta=\left(-2\right)^2-4\cdot2\cdot\left(-4\right)=4+32=36\)
Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{2-\sqrt{36}}{4}=\dfrac{2-6}{4}=-1\\m_2=\dfrac{2+\sqrt{36}}{4}=\dfrac{2+6}{4}=2\end{matrix}\right.\)
Vậy: Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1^2+x_2^2=8\) thì \(m\in\left\{-1;2\right\}\)
Cho phương trình 3x2 - 2(m + 1)x + 3m - 5 = 0
Xác định m để phương trình có một nghiệm gấp ba nghiệm kia. Tính các nghiệm trong trường hợp đó.
Ta có : 3x2 – 2(m + 1)x + 3m – 5 = 0 (1)
(1) có hai nghiệm phân biệt khi Δ’ > 0
⇔ (m + 1)2 – 3.(3m – 5) > 0
⇔ m2 + 2m + 1 – 9m + 15 > 0
⇔ m2 – 7m + 16 > 0
⇔ (m – 7/2)2 + 15/4 > 0
Điều này luôn đúng với mọi m ∈ R hay phương trình (1) luôn có hai nghiệm phân biệt., gọi hai nghiệm đó là x1; x2
Khi đó theo định lý Vi–et ta có (I)
Phương trình có một nghiệm gấp ba nghiệm kia, giả sử x2 = 3.x1, khi thay vào (I) suy ra :
* TH1 : m = 3, pt (1) trở thành 3x2 – 8m + 4 = 0 có hai nghiệm x1 = 2/3 và x2 = 2 thỏa mãn điều kiện.
* TH2 : m = 7, pt (1) trở thành 3x2 – 16m + 16 = 0 có hai nghiệm x1 = 4/3 và x2 = 4 thỏa mãn điều kiện.
Kết luận : m = 3 thì pt có hai nghiệm là 2/3 và 2.
m = 7 thì pt có hai nghiệm 4/3 và 4.
Cho phương trình ( m + 1 ) x 2 + ( 3 m - 1 ) x + 2 m - 2 = 0 . Xác định m để phương trình có hai nghiệm x 1 , x 2 mà x 1 + x 2 = 3 . Tính các nghiệm trong trường hợp đó.
Với m ≠ -1
Ta có: Δ = ( m - 3 ) 2 ≥ 0 , do đó phương trình luôn luôn có hai nghiệm x 1 , x 2
Lúc đó phương trình đã cho có hai nghiệm x = -1 và x = 4.
Cho phương trình: \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a) CMR phương trình luôn có hai nghiệm phân biệt với mọi m
b) Xác định m để phương trình có hai nghiệm \(x_1,x_2\) thoả mãn \(1< x_1< x_2< 6\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
Cho phương trình x 2 – (2m – 3)x + m 2 – 3m = 0. Xác định m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn 1 < x 1 < x 2 < 6
A. m < 6
B. m > 4
C. 4 ≤ m ≤ 6
D. 4 < m < 6
Xét phương trình x 2 – (2m – 3)x + m 2 – 3m = 0 có a = 1 ≠ 0 và
∆ = ( 2 m – 3 ) 2 – 4 ( m 2 – 3 m ) = 9 > 0
Phương trình luôn có hai nghiệm phân biệt x 1 ; x 2
Áp dụng định lý Vi-ét ta có: x 1 + x 2 = 2 m – 3 ; x 1 . x 2 = m 2 – 3 m
Ta có 1 < x 1 < x 2 < 6
⇔ x 1 − 1 x 2 − 1 > 0 x 1 + x 2 > 1 x 1 − 6 x 2 − 6 > 0 x 1 + x 2 < 12 ⇔ x 1 x 2 − x 1 + x 2 + 1 > 0 x 1 + x 2 > 1 x 1 x 2 − 6 x 1 + x 2 + 36 > 0 x 1 + x 2 < 12 ⇔ m 2 − 3 m − 2 m + 3 + 1 > 0 2 m − 3 > 1 m 2 − 3 m − 6 2 m − 3 + 36 > 0 2 m − 3 < 12 ⇔ m 2 − 5 m + 4 > 0 2 m > 4 m 2 − 15 m + 54 > 0 2 m < 15 ⇔ m < 1 m > 4 m > 2 m < 6 m > 9 m < 15 2
⇔ 4 < m < 6
Đáp án: D
cho phương trình \(x^2+\left(2m-1\right)x+m^2-3m-4=0\)(1)
xác định các giá trị của m để pt (1) cóhai nghiệm phân biệt x1,x2 tmđk\(\left|x_1-x_2\right|-2=0\)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Lời giải:
Để pt có 2 nghiệm pb thì:
$\Delta'=(2m-1)^2-4(m^2-3m-4)=8m+17>0\Leftrightarrow m> \frac{-17}{8}$
Áp dụng định lý Viet:
$x_1+x_2=1-2m$
$x_1x_2=m^2-3m-4$
Khi đó:
$|x_1-x_2|-2=0$
$\Leftrightarrow |x_1-x_2|=2$
$\Leftrightarrow (x_1-x_2)^2=4$
$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=4$
$\Leftrightarrow (1-2m)^2-4(m^2-3m-4)=4$
$\Leftrightarrow 8m+17=4$
$\Leftrightarrow m=\frac{-13}{8}$ (tm)
Để pt 1 có 2 nghiệm phân biệt =>\(\Delta\)>0
<=> (2m-1(2 - 4(m2-3m-4( >0
<=> 4m2 - 4m + 1 - 4m2+12m+16 > 0
<=>8m +17>0
<=> m>-17/8
=> theo hệ thức Vi ét ta có
x1+x2=-2m+1 *
x1.x2=m2-3m-4 *
Theo bài ra ta có pt
|x1−x2|−2=0
<=> |x1−x2|=2
<=> (x1-x2(2=22
<=> x12 - 2x1.x2 + x22 = 4
<=> (x1 + x2 > 2- 4 x1x2 = 4 <**>
Thay *,* vào <**> ta được :
(-<2m-1>>2 - 4<m2-3m-4> = 4
<=> 4m2-4m+1 - 4m2+12m+16=4
<=> 8m + 17= 4
<=> 8m = 13
<=> m= 13/8 < t/m >
Vậy m = 13/8 là giá trị cần tìm
Cho hệ phương trình:
\(\begin{cases} x+my=2\\ mx- 3my=3m+3 \end{cases} \)
Xác định giá trị của m để hệ có nghiệm x,y thỏa mãn y = 8\(x^2\)
Lời giải:
Ta có $x+my=2\Rightarrow x=2-my$. Thay vào PT $(2)$:
$m(2-my)-3my=3m+3$
$\Leftrightarrow -y(m^2+3m)=m+3$
$\Leftrightarrow -ym(m+3)=m+3(*)$
Để hệ PT ban đầu có nghiệm thì $(*)$ có nghiệm $y$
Điều này xảy ra khi $m(m+3)\neq 0\Leftrightarrow m\neq 0;-3$
Khi đó:
$y=\frac{m+3}{-m(m+3)}=-\frac{1}{m}$
$x=2-my=3$
Như vậy:
$y=8x^2$
$\Leftrightarrow \frac{-1}{m}=72\Leftrightarrow m=-72$
Vậy........
Cho phương trình x2-(2m-3)x+m2-3m=0
a)Chứng minh rằng phương trình có nghiệm với mọi m
b)Xác định m để phương trình có nghiệm x1;x2 thỏa mãn 1<x1<x2<6
Cho phương trình \(3x^2-2\left(m+1\right)x+3m-5=0\)
Xác định m để phương trình có một nghiệp gấp 3 lần nghiệm kia. Tính các nghiệm trong trường hợp đó ?
\(3x^2-2\left(m+1\right)x+3m-5=0\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)
Theo yêu cầu đề bài \(x_1=3x_2\)
\(\)\(\Rightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3x_2^2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3\left(\dfrac{m+1}{6}\right)^2=\dfrac{3m-5}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{12}=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{4}=3m-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2+2m+1=12m-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2-10m+21=0\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\left[{}\begin{matrix}m_1=7\\m_2=3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m_1=7\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=\dfrac{4}{3}\end{matrix}\right.\\m_2=3\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)