Tìm a,b sao cho đa thức 3x3 + ax2 + bx + 9 chia hết cho x + 3 và x - 3
tìm a b c sao cho đa thức x4 + ax2 + bx + c chia hết cho đa thuc ( x - 3 )3
(Câu trả lời của alibaba nguyễn đúng mà hài!!!)
Sơ đồ Horner hoạt động như sau:
1 | 0 | a | b | c | |
3 | 1 | 3 | a+9 | 3a+b+27 | 9a+3b+c+27 |
3 | 1 | 6 | a+27 | 6a+b+108 | 27a+6b+c+351 |
3 | ... | ... | ... | ... | ... |
Tìm a,b sao cho:
a,Đa thức x^4-x^3+6x^2-x+a chia hết cho x^2-x+5
b,Đa thức 2x^3-3x^2+x+a chia hết cho x+2
c,Đa thức 3x^3+ax^2+bx+9 chia hết cho x+3 và x-3
Cau a va b dat cot tim so du .Vi la phep chia het nen du bang 0.Cau c thi da thuc se chia het cho tich (x+3)(x-3) lam tuong tu hai cau a va b
tìm và xác định số hiệu tỷ a,b sao cho : 3x^3+ax^2+bx+9 chia hết cho đa thức x^2-9
B) x^4+ax^33+bx-1 chia hết cho x^2-1
1) Tìm a,b sao cho
a) Đa thức 3x^3+ax^2+bx+9 chia hết cho x+3 và x-3
bạn có thể động óc suy nghĩ bái toán để được còn hơn là nói như thế
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
Với giá trị nào của a, b thì đa thức x4 - 3x3 + ax2 + 4x - b chia hết cho đa thức x2 - x + 1
\(f\left(0\right)=c⋮3\) ;
\(f\left(1\right)=a+b+c⋮3\) mà \(c⋮3\Rightarrow a+b⋮3\)
\(f\left(-1\right)=a-b+c=-2b+\left(a+b+c\right)⋮3\) mà \(a+b+c⋮3\Rightarrow-2b⋮3\Rightarrow b⋮3\) (do 2 và 3 nguyên tố cùng nhau)
\(\left\{{}\begin{matrix}a+b+c⋮3\\b⋮3\\c⋮3\end{matrix}\right.\) \(\Rightarrow a⋮3\)
Tìm a,b sao cho:
a,Đa thức x^4-x^3+6x^2-x+a chia hết cho x^2-x+5
b,Đa thức 2x^3-3x^2+x+a chia hết cho x+2
c,Đa thức 3x^3+ax^2+bx+9 chia hết cho x+3 và x-3
Vậy a = 5 thì đa thức x^4 - x^3 + 6x^2 - x +a chia hết cho đa thức x^2 - x + 5
giúp mình với:
tìm hệ số a sao cho đa thức: 2x2-ax+5 chia cho đa thức 2x-3 có số dư bằng 2
tìm hệ số a và b sao cho đa thức: ax3+bx-24 chia hết cho (x+1)(x+3)
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé