Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sn Sakai
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Trần Trung Nguyên
1 tháng 12 2018 lúc 17:43

không thấy e nha bạn

Phan Thanh Tịnh
Xem chi tiết
Lê Diệu Chinh
Xem chi tiết
Mazuko Motohashi
Xem chi tiết
Nguyễn Thị Thu Hương
13 tháng 8 2018 lúc 20:18

Cho a b c d e f là các số nguyên dương,a/b  c/d  e/f và af - be = 1,Chứng minh d = b + f,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 11:52

Đặt \(A=a^5+b^5+c^5\)

\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)

Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5

Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5

Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)

Vậy \(B=a^5-a⋮5\) với mọi a nguyên

Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c

\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)

(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))

Lê Thành Đạt
Xem chi tiết
Nguyễn Thúy Ngọc
Xem chi tiết
Fudo
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Khách vãng lai đã xóa
Me
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Khách vãng lai đã xóa
Fudo
22 tháng 1 2020 lúc 11:51

Bài 2 :                                                       Bài giải

a, \(\left(x+5\right)\left(y-2\right)=-6\)

\(\Rightarrow\text{ }\left(x+5\right)\text{ ; }\left(y-2\right)\inƯ\left(-6\right)\)

Ta có bảng : 

x + 5 - 2- 3- 1- 6
y - 23261
x- 7- 8- 6- 11
y5483

Vậy \(\left(x\text{ ; }y\right)=\left(-7\text{ ; }5\right)\text{ ; }\left(-8\text{ ; }4\right)\text{ ; }\left(-6\text{ ; }8\right)\text{ ; }\left(-11\text{ ; }3\right)\)

Khách vãng lai đã xóa
✓ ℍɠŞ_ŦƦùM $₦G ✓
Xem chi tiết
Nguyễn Tấn Duy Anh
21 tháng 6 2015 lúc 21:26

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

Lê Quang Phúc
21 tháng 6 2015 lúc 21:31

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

zZz Cool Kid_new zZz
18 tháng 4 2019 lúc 13:20

Thử dùng đi-rích-lê+ modun=((

Đặt biểu thức cần chứng minh là P

Ta có:\(288=3^2\cdot2^5\)

Xét 4 số  \(a,b,c,d\) thì tồn tại 2 số có cùng số dư khi chia cho 3.

Giả sử \(a\equiv b\left(mod3\right)\Rightarrow a-b⋮3\left(1\right)\)

Xét 4 số  \(b,d,c,e\) thì tông tại 2 số có cùng số dư khi chia cho 3.

Giả sử \(c\equiv d\left(mod3\right)\Rightarrow c-d⋮3\left(2\right)\)

Từ (1);(2) suy ra \(P⋮9\left(3\right)\)

Trong 5 số đã cho thì chắc chắn có 3 số cùng tính chẵn lẻ.

Chúng ta cần xét các trường hợp có thể xảy ra.

4 số chẵn giả sử các số đó là:a,b,c,d.

Đặt \(a=2a_1;b=2b_1;c=2c_1;d=2d_1\) với \(a_1;b_1;c_1;d_1\in N\)

\(\Rightarrow P=\left(2a_1-2b_1\right)\left(2a_1-2c_1\right)\left(2a_1-2d_1\right)\left(2a_1-e\right)\left(2b_1-2c_1\right)\left(2b_1-2d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)

\(\Rightarrow P=2^5\cdot\left(a_1-b_1\right)\left(a_1-c_1\right)\left(a_1-d_1\right)\left(2a_1-e\right)\left(b_1-c_1\right)\left(b_1-d_1\right)\left(2b_1-e\right)\left(2c_1-2d_1\right)\left(2c_1-e\right)\left(2d_1-e\right)\)

Giả sử 3 số a,b,c chẵn còn d,e lẻ.

Đặt \(a=2a_2;b=2b_2;c=2c_2;d=2d_2+1;e=2e_2+1\)

\(\Rightarrow P=\left(2a_2-2b_2\right)\left(2a_2-2c_2\right)\left(2b_2-2c_2\right)Q\)

\(\Rightarrow P=16\left(a_2-b_2\right)\left(a_2-c_2\right)\left(b_2-c_2\right)\left(d_2-e_2\right)\cdot Q\)

Xét 3 số  \(a_2;b_2;c_2\) thì có 2 số chia cho 2 có cùng số dư.

Giả sử 2 số đó là \(a_2;b_2\)

\(\Rightarrow a_2-b_2⋮2\Rightarrow P⋮32\)

Giả sử có 3 số lẻ là  \(a,b,c\) và 2 số chẵn là \(d,e\)

Đặt \(a=a_3+1;b=b_3+1;c=c_3+1;d=2d_3;e=2e_3\)

Chứng minh tương tự như TH2 thì P chia hết cho 32.

Trong cả 3 trường hợp đều chia hết cho 32 nên P chia hết cho 32

Mà \(\left(32;9\right)=1\Rightarrow P⋮32\cdot9=288\left(đpcm\right)\)