Bài 4:: a) Xác định k\(\inℤ\) để giá trị của biểu thức \(k^3+2x^2+15\)chia hết cho giá trị của biểu thức k+3
b) Với giá trị nào của a và b thì đa thức f(x)= \(x^4-3x^3+3x^2+ax+b\)chia hết cho đa thức g(x)=-3x-4
Bài 4:: a) Xác định k\(\inℤ\) để giá trị của biểu thức \(k^3+2x^2+15\)chia hết cho giá trị của biểu thức k+3
b) Với giá trị nào của a và b thì đa thức f(x)= \(x^4-3x^3+3x^2+ax+b\)chia hết cho đa thức g(x)=-3x-4
Bài 3 :
a) Tìm các giá trị nguyên của n để giá trị của biểu thức \(2n^2-n+2\) chia hết cho giá trị biểu thức 2n + 1
b) Cho đa thức M(x) = \(x^3+x^2-x+a\) với a là một hằng số . Xác định giá trị của a sao cho đa thức M(x) chia hết cho \(\left(x+1\right)^2\)
c) Cho hai đa thức P(x) = \(x^4+3x^3-x^2+ax+b\) và Q(x) = \(x^2+2x-3\) với a , b là hai hằng số . Xác định giá trị của đa thức P(x) chia hết cho đa thức Q(x)
c) Cách 1:
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left(a+3\right)x+b=0\)
\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)
Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)
a)
Để \(2n^2-n+2⋮2n+1\)
\(\Leftrightarrow3⋮2n+1\)
\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)
Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)
b) Áp dụng định lý Bezout ta có:
\(M\left(x\right)\)chia hết cho \(\left(x+1\right)^2\)\(\Leftrightarrow M\left(-1\right)=0\)
\(\Leftrightarrow-1+1+1+a=0\)
\(\Leftrightarrow a=-1\)
Vậy a=-1 thì M(x) chia hết cho \(\left(x+1\right)^2\)
Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF
Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z
Tìm a, b sao cho
a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Tìm giá trị nguyên của n
a/ Để giá trị của biểu thức 3n3 + 10n2 – 5 chia hết cho giá trị của biểu thức 3n+1.
b/ Để giá trị của biểu thức 10n2 + n – 10 chia hết cho giá trị của biểu thức n – 1 .
giúp tôi với
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
Bài 5: Tìm a, b để: x^4-3x^3+3x^2+ax+b chia hết cho x^2-3x+2
Bài 6: Tìm x thuộc Z để giá trị của biểu thức: x^3+2x-x^2+7 chia hết cho giá trị của biểu thức x^2+1
3x+7=28
3x =28-7
3x =21
x =21:3
x =7
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên.
Do đó f(x) cho hết khi chia hết
Ta có:
\(f\left(x\right)=\left(x-1\right)\left(x^2-x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên
Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)
=>a=b= -2
Cho đa thức f(x)=x^3-3x^2+2. Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức x^2+ax+b
\(f\left(x\right)=\left(x-1\right)\left(x^2-2x-2\right)\) và đây là cách phân tích duy nhất mà các hệ số của nhân tử đều nguyên
Do đó f(x) cho hết \(x^2+ax+b\) khi \(x^2-2x-2\) chia hết \(x^2+ax+b\)
\(\Rightarrow a=b=-2\)
Đa thức x^4+3x^3-17x^2+ax+b chia hết cho đa thức x^2+5x-3 thì giá trị của biểu thức a+b là
Cho đa thức: \(f\left(x\right)=x^3-3x^2+2\). Với giá trị nguyên nào của a và b thì đa thức f(x) chia hết cho đa thức: \(x^2+ax+b\)
Lời giải:
\(x^3-3x^2+2=x(x^2+ax+b)-(a+3)(x^2+ax+b)+(a^2+3a-b)x+b(a+3)+2\)
Để $f(x)$ chia hết cho $x^2+ax+b$ thì:
\(\left\{\begin{matrix} a^2+3a-b=0\\ b(a+3)+2=0\end{matrix}\right.\)
Với $a,b$ nguyên ta dễ dàng tìm được $a=b=-2$