\(P=\frac{x^3-4x}{x^2+4}\cdot\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
rút gọn P
\(P=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right)\cdot\left(\frac{\left(x^3-2x^2-2x-1\right)\cdot\left(x+1\right)}{x^9+x^7-3x^2-3}\right)+1-\frac{2\left(x+6\right)}{x^2+1}\right]\cdot\frac{4x^2+4x+1}{\left(x+3\right)\left(4-x\right)}\)
a, Tìm ĐKXD của P
b,Rút Gọn P
c,Chứng Minh Với các giá trị của x mà biểu thức P có nghĩa thì \(-5\le P\le0\)
\(\frac{\left(x+\frac{1}{x}\right)^4-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}\cdot\frac{x^4+1999x^2+1}{2x^2}\)
a,Rút gọn bt
b,tính giá trị của bt biết \(x^2-4x+1=0\)
Rút gọn biểu thức sau: A=\(\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right].\frac{4x^2+4x+1}{\left(x+4\right)\left(3-x\right)}\)
\(A,\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)=\frac{4x}{\left(x+1\right)^2}\)
\(B,\frac{2+x}{2-x}:\frac{4x^2}{4-4x+x^2}\cdot\left(\frac{2}{2-x}-\frac{4}{8+x^2}\cdot\frac{4-2x+x^2}{2-x}\right)=\frac{1}{2x}\)
\(C,\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right):\frac{2x+y}{x^2+2xy+y^2}\right]\cdot\frac{x-y}{3}=xy\)
Chứng minh đẳng thức ( tìm x)
mọi người giải dùm mình cảm ơn
a VT=.\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\left(\frac{1}{x+1}-\frac{x}{1-x}+\frac{2}{x^2-1}\right)\)
=\(\frac{\left(x+1\right)^2-\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}:\frac{x-1+x\left(x-1\right)+2}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{x^2+2x+1-x^2+2x-1}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{x^2+2x+1}\)
\(=\frac{4x}{\left(x+1\right)^2}\)=VP
b.VT\(=\frac{2+x}{2-x}.\frac{\left(2-x\right)^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{\left(x+2\right)\left(x^2-2x+4\right)}.\frac{4-2x+x^2}{2-x}\right)\)
=\(\frac{4-x^2}{4x^2}.\left(\frac{2}{2-x}-\frac{4}{4-x^2}\right)=\frac{4-x^2}{4x^2}.\frac{2\left(2+x\right)-4}{4-x^2}\)
=\(\frac{2x}{4x^2}=\frac{1}{2x}\)=VP
c VT=.\(\left[\left(\frac{3}{x-y}+\frac{3x}{x^2-y^2}\right).\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\left[\frac{3\left(x+y\right)+3x}{\left(x+y\right)\left(x-y\right)}.\frac{\left(x+y\right)^2}{2x+y}\right].\frac{x-y}{3}\)
\(=\frac{3\left(2x+y\right)\left(x+y\right)^2}{\left(x+y\right)\left(x-y\right)\left(2x+y\right)}.\frac{x-y}{3}\)
\(=x+y=\)VP
Vậy các đẳng thức được chứng minh
=
Cho biểu thức .
\(P=\left(\frac{4x-x^3}{1-4x^2}-x\right):\left(\frac{4x^2-x^4}{1-4x^2}+1\right)\)
Rút gọn
\(P=\frac{4x-x^3-x+4x^3}{1-4x^2}:\frac{4x^2-x^4+1-4x^2}{1-4x^2}\)
\(=\frac{3x^3+3x}{1-4x^2}:\frac{1-x^4}{1-4x^2}\)
\(=\frac{3x\left(x^2+1\right)}{\left(1-x^2\right)\left(1+x^2\right)}\)
\(=\frac{3x}{1-x^2}\)
Tìm giá trị của biểu thức : \(C=\frac{4x^4+1}{4\left(x+1\right)^2+1}\cdot\frac{4\left(x+2\right)^4+1}{4\left(x+3\right)^4+1}\cdot\cdot\cdot\frac{4\left(x+10\right)^4+1}{4\left(x+11\right)^4+1}\)
Rút gọn A=\(\frac{\sqrt{x-\sqrt{4x-4}}+\sqrt{x+4\sqrt{4x-4}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
Bài 1: Rút gọn biểu thức:
a) A = \(\left(\frac{1}{x^2-4x}+\frac{2}{16-x^2}+\frac{4}{4x+16}\right):\frac{1}{4x}\)
\(A=\left(\dfrac{1}{x^2-4x}+\dfrac{2}{16-x^2}+\dfrac{4}{4x+16}\right):\dfrac{1}{4x}\left(x\ne4;x\ne-4;x\ne0\right).\)
\(A=\left(\dfrac{1}{x\left(x-4\right)}+\dfrac{-2}{\left(x+4\right)\left(x-4\right)}+\dfrac{1}{x+4}\right).4x\).
\(A=\dfrac{x+4-2x+x^2-4x}{x\left(x-4\right)\left(x+4\right)}.4x.\)
\(A=\dfrac{x^2-5x+4}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x+4\right)}.4.\)
\(A=\dfrac{4\left(x-1\right)}{x+4}.\)
rút gọn
a) \(\frac{1}{x-y}-\frac{3xy}{x^2-y^2}+\frac{x-y}{x^2+x+y^2}\)
b) \(\frac{1}{x^2+3x+2}+\frac{1}{x^2+4x+4}+\frac{1}{x^2+5x+6}\)
c) \(\frac{4.\left(x+3\right)^2}{\left(3x+5\right)^2-4x^2}-\frac{x^2-25}{9x^2.\left(2x+5\right)^2}-\frac{\left(2x+3\right)^2-x^2}{\left(4x+15\right)^2-x^2}\)
b: \(=\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}\)
\(=\dfrac{\left(x+2\right)\left(x+3\right)+\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+1\right)}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{x^2+5x+6+x^2+4x+3+x^2+3x+2}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)
\(=\dfrac{3x^2+12x+11}{\left(x+2\right)^2\cdot\left(x+1\right)\left(x+3\right)}\)