ĐK: \(\hept{\begin{cases}x^2+4x+4\ne0\\4-x^2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\ne0\\\left(2-x\right)\left(2+x\right)\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}}\)
\(P=\frac{x^3-4x}{x^2+4}.\left(\frac{1}{x^2+4x+4}+\frac{1}{4-x^2}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{1}{\left(x+2\right)^2}+\frac{-1}{\left(x-2\right)\left(x+2\right)}\right)\)
\(=\frac{x\left(x^2-4\right)}{x^2+4}.\left(\frac{x-2-\left(x+2\right)}{\left(x+2\right)^2\left(x-2\right)}\right)\)
\(=\frac{x\left(x-2\right)\left(x+2\right)}{x^2+4}.\frac{-4}{\left(x+2\right)^2\left(x-2\right)}=\frac{-4x}{\left(x^2+4\right)\left(x+2\right)}\)