Cho a5+b5-29c5=149d5+269e5 (a,b,c,d,e \(\in\) Z)
Chứng minh: (a+b+c+d+e) \(⋮\) 30.
Cho a5+b5-29c5=149d5+269e5 (a,b,c,d,e ∈ Z) Chứng minh: (a+b+c+d+e) ⋮ 30
Helppppppppppppp meeeeeeeeeeeeeeeeeeeeeeee.
Cho a,b,c,d,e\(\in Z^+\)thoả mãn ab = bc = cd = de = ea.Chứng minh a = b = c = d = e
Cho \(a^5+b^5-29c^5=149d^5+269c^5\) (a,b,c,d thuộc Z)
Chứng minh: \(\left(a+b+c+d+e\right)⋮30\)
Cho 5 số a,b,c,d,e\(\in n\)thỏa mãn:\(a^b=b^c=c^d=d^e=e^a\).Chứng minh rằng:a=b=c=d=e.
Giả sử a>b( trường hợp a<b chứng minh tương tự). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số( là số tự nhiên) khác nhauthì lũy thừa nào có cơ số nhỏ hơn sẽ có số mũ lớn hơn. Xong tiếp tục giải là ra
cho a,b,c,e,f thuộc Z+ biết a/b>c/d>e/f và af-be=1. Chứng minh d>b+f
Cho a,b,c,e,f thuộc Z+ biết a/b>c/d>e/f và af-be=1. Chứng minh d>b+f
Cho a,b,c là các số nguyên và a + b + c chia hết cho 5. Chứng minh a5 + b5 + c5 chia hết cho 5
Đặt \(A=a^5+b^5+c^5\)
\(A-\left(a+b+c\right)=a^5-a+b^5-b+c^5-c\)
Ta có: \(B=a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Nếu \(a\) chia hết cho 5 \(\Rightarrow B\) chia hết cho 5
Nếu a chia 5 dư 1 hoặc -1 \(\Rightarrow\left(a-1\right)\left(a+1\right)\) chia hết chi 5 \(\Rightarrow\)B chia hết cho 5
Nếu a chia 5 dư 2 hoặc -2 \(\Rightarrow a^2+1\) chia 5 dư \(\left(\pm2\right)^2+1=5\Rightarrow a^2+1⋮5\Rightarrow B⋮5\)
Vậy \(B=a^5-a⋮5\) với mọi a nguyên
Hoàn toàn tương tự, \(b^5-b\) và \(c^5-c\) chia hết cho 5 với mọi b; c
\(\Rightarrow A-\left(a+b+c\right)⋮5\Rightarrow A⋮5\) (đpcm)
(Có thể ngắn gọn hơn là \(a^5\equiv a\left(mod5\right)\Rightarrow a^5-a⋮5\) ; \(\forall a\in Z\))
Cho tam giác nhọn $A B C$ nhọn nội tiếp đường tròn $(O)$. Các đường cao $A D, BE, CF$ $(D \in B C, E \in AC, F \in AB)$ của tam giác cắt nhau tại $H, M$ là trung điểm của $B C$.
1. Chứng minh $A E H F$ là tứ giác nội tiếp.
2. Chứng minh các đường thẳng $M E$ và $M F$ là các tiếp tuyến của đường tròn ngoại tiếp tứ giác $A E H F$.
3. Chứng minh $D E+D F \leq B C$.
Cho a, b, c, d, e là các số đôi một nguyên tố cùng nhau. Chứng minh rằng \(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{e}+\frac{e}{a}\right)\notin Z\)